72 research outputs found

    DSNN: A DenseNet-Based SNN for Explainable Brain Disease Classification

    Get PDF
    Aims: Brain diseases refer to intracranial tissue and organ inflammation, vascular diseases, tumors, degeneration, malformations, genetic diseases, immune diseases, nutritional and metabolic diseases, poisoning, trauma, parasitic diseases, etc. Taking Alzheimer's disease (AD) as an example, the number of patients dramatically increases in developed countries. By 2025, the number of elderly patients with AD aged 65 and over will reach 7.1 million, an increase of nearly 29% over the 5.5 million patients of the same age in 2018. Unless medical breakthroughs are made, AD patients may increase from 5.5 million to 13.8 million by 2050, almost three times the original. Researchers have focused on developing complex machine learning (ML) algorithms, i.e., convolutional neural networks (CNNs), containing millions of parameters. However, CNN models need many training samples. A small number of training samples in CNN models may lead to overfitting problems. With the continuous research of CNN, other networks have been proposed, such as randomized neural networks (RNNs). Schmidt neural network (SNN), random vector functional link (RVFL), and extreme learning machine (ELM) are three types of RNNs.Methods: We propose three novel models to classify brain diseases to cope with these problems. The proposed models are DenseNet-based SNN (DSNN), DenseNet-based RVFL (DRVFL), and DenseNet-based ELM (DELM). The backbone of the three proposed models is the pre-trained "customize" DenseNet. The modified DenseNet is fine-tuned on the empirical dataset. Finally, the last five layers of the fine-tuned DenseNet are substituted by SNN, ELM, and RVFL, respectively.Results: Overall, the DSNN gets the best performance among the three proposed models in classification performance. We evaluate the proposed DSNN by five-fold cross-validation. The accuracy, sensitivity, specificity, precision, and F1-score of the proposed DSNN on the test set are 98.46% +/- 2.05%, 100.00% +/- 0.00%, 85.00% +/- 20.00%, 98.36% +/- 2.17%, and 99.16% +/- 1.11%, respectively. The proposed DSNN is compared with restricted DenseNet, spiking neural network, and other state-of-the-art methods. Finally, our model obtains the best results among all models.Conclusions: DSNN is an effective model for classifying brain diseases.Hope Foundation for Cancer Research, UK RM60G0680Royal Society International Exchanges Cost Share Award, UK RP202G0230Medical Research Council Confidence in Concept Award, UK MC_PC_17171British Heart Foundation Accelerator Award, UK AA/18/3/34220Sino-UK Industrial Fund, UK RP202G0289Global Challenges Research Fund (GCRF), UK P202PF11LIAS Pioneering Partnerships award, UK P202ED10Data Science Enhancement Fund, UK P202RE237Guangxi Key Laboratory of Trusted Software kx20190

    Deep Randomized Neural Networks

    Get PDF
    Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed, either in a stochastic or a deterministic fashion. Typical examples of such systems consist of multi-layered neural network architectures where the connections to the hidden layer(s) are left untrained after initialization. Limiting the training algorithms to operate on a reduced set of weights inherently characterizes the class of Randomized Neural Networks with a number of intriguing features. Among them, the extreme efficiency of the resulting learning processes is undoubtedly a striking advantage with respect to fully trained architectures. Besides, despite the involved simplifications, randomized neural systems possess remarkable properties both in practice, achieving state-of-the-art results in multiple domains, and theoretically, allowing to analyze intrinsic properties of neural architectures (e.g. before training of the hidden layers' connections). In recent years, the study of Randomized Neural Networks has been extended towards deep architectures, opening new research directions to the design of effective yet extremely efficient deep learning models in vectorial as well as in more complex data domains. This chapter surveys all the major aspects regarding the design and analysis of Randomized Neural Networks, and some of the key results with respect to their approximation capabilities. In particular, we first introduce the fundamentals of randomized neural models in the context of feed-forward networks (i.e., Random Vector Functional Link and equivalent models) and convolutional filters, before moving to the case of recurrent systems (i.e., Reservoir Computing networks). For both, we focus specifically on recent results in the domain of deep randomized systems, and (for recurrent models) their application to structured domains

    Randomness in neural networks: an overview

    Get PDF
    Neural networks, as powerful tools for data mining and knowledge engineering, can learn from data to build feature-based classifiers and nonlinear predictive models. Training neural networks involves the optimization of nonconvex objective functions, and usually, the learning process is costly and infeasible for applications associated with data streams. A possible, albeit counterintuitive, alternative is to randomly assign a subset of the networks’ weights so that the resulting optimization task can be formulated as a linear least-squares problem. This methodology can be applied to both feedforward and recurrent networks, and similar techniques can be used to approximate kernel functions. Many experimental results indicate that such randomized models can reach sound performance compared to fully adaptable ones, with a number of favorable benefits, including (1) simplicity of implementation, (2) faster learning with less intervention from human beings, and (3) possibility of leveraging overall linear regression and classification algorithms (e.g., ℓ 1 norm minimization for obtaining sparse formulations). This class of neural networks attractive and valuable to the data mining community, particularly for handling large scale data mining in real-time. However, the literature in the field is extremely vast and fragmented, with many results being reintroduced multiple times under different names. This overview aims to provide a self-contained, uniform introduction to the different ways in which randomization can be applied to the design of neural networks and kernel functions. A clear exposition of the basic framework underlying all these approaches helps to clarify innovative lines of research, open problems, and most importantly, foster the exchanges of well-known results throughout different communities. WIREs Data Mining Knowl Discov 2017, 7:e1200. doi: 10.1002/widm.1200

    Approximation with Random Bases: Pro et Contra

    Full text link
    In this work we discuss the problem of selecting suitable approximators from families of parameterized elementary functions that are known to be dense in a Hilbert space of functions. We consider and analyze published procedures, both randomized and deterministic, for selecting elements from these families that have been shown to ensure the rate of convergence in L2L_2 norm of order O(1/N)O(1/N), where NN is the number of elements. We show that both randomized and deterministic procedures are successful if additional information about the families of functions to be approximated is provided. In the absence of such additional information one may observe exponential growth of the number of terms needed to approximate the function and/or extreme sensitivity of the outcome of the approximation to parameters. Implications of our analysis for applications of neural networks in modeling and control are illustrated with examples.Comment: arXiv admin note: text overlap with arXiv:0905.067

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    • …
    corecore