283 research outputs found

    Automated Semiconductor Defect Inspection in Scanning Electron Microscope Images: a Systematic Review

    Full text link
    A growing need exists for efficient and accurate methods for detecting defects in semiconductor materials and devices. These defects can have a detrimental impact on the efficiency of the manufacturing process, because they cause critical failures and wafer-yield limitations. As nodes and patterns get smaller, even high-resolution imaging techniques such as Scanning Electron Microscopy (SEM) produce noisy images due to operating close to sensitivity levels and due to varying physical properties of different underlayers or resist materials. This inherent noise is one of the main challenges for defect inspection. One promising approach is the use of machine learning algorithms, which can be trained to accurately classify and locate defects in semiconductor samples. Recently, convolutional neural networks have proved to be particularly useful in this regard. This systematic review provides a comprehensive overview of the state of automated semiconductor defect inspection on SEM images, including the most recent innovations and developments. 38 publications were selected on this topic, indexed in IEEE Xplore and SPIE databases. For each of these, the application, methodology, dataset, results, limitations and future work were summarized. A comprehensive overview and analysis of their methods is provided. Finally, promising avenues for future work in the field of SEM-based defect inspection are suggested.Comment: 16 pages, 12 figures, 3 table

    ์ œ์กฐ ์‹œ์Šคํ…œ์—์„œ์˜ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์„ ์œ„ํ•œ ์ง€๋Šฅ์  ๋ฐ์ดํ„ฐ ํš๋“

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021. 2. ์กฐ์„ฑ์ค€.Predictive modeling is a type of supervised learning to find the functional relationship between the input variables and the output variable. Predictive modeling is used in various aspects in manufacturing systems, such as automation of visual inspection, prediction of faulty products, and result estimation of expensive inspection. To build a high-performance predictive model, it is essential to secure high quality data. However, in manufacturing systems, it is practically impossible to acquire enough data of all kinds that are needed for the predictive modeling. There are three main difficulties in the data acquisition in manufacturing systems. First, labeled data always comes with a cost. In many problems, labeling must be done by experienced engineers, which is costly. Second, due to the inspection cost, not all inspections can be performed on all products. Because of time and monetary constraints in the manufacturing system, it is impossible to obtain all the desired inspection results. Third, changes in the manufacturing environment make data acquisition difficult. A change in the manufacturing environment causes a change in the distribution of generated data, making it impossible to obtain enough consistent data. Then, the model have to be trained with a small amount of data. In this dissertation, we overcome this difficulties in data acquisition through active learning, active feature-value acquisition, and domain adaptation. First, we propose an active learning framework to solve the high labeling cost of the wafer map pattern classification. This makes it possible to achieve higher performance with a lower labeling cost. Moreover, the cost efficiency is further improved by incorporating the cluster-level annotation into active learning. For the inspection cost for fault prediction problem, we propose a active inspection framework. By selecting products to undergo high-cost inspection with the novel uncertainty estimation method, high performance can be obtained with low inspection cost. To solve the recipe transition problem that frequently occurs in faulty wafer prediction in semiconductor manufacturing, a domain adaptation methods are used. Through sequential application of unsupervised domain adaptation and semi-supervised domain adaptation, performance degradation due to recipe transition is minimized. Through experiments on real-world data, it was demonstrated that the proposed methodologies can overcome the data acquisition problems in the manufacturing systems and improve the performance of the predictive models.์˜ˆ์ธก ๋ชจ๋ธ๋ง์€ ์ง€๋„ ํ•™์Šต์˜ ์ผ์ข…์œผ๋กœ, ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ์ž…๋ ฅ ๋ณ€์ˆ˜์™€ ์ถœ๋ ฅ ๋ณ€์ˆ˜ ๊ฐ„์˜ ํ•จ์ˆ˜์  ๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ๊ณผ์ •์ด๋‹ค. ์ด๋Ÿฐ ์˜ˆ์ธก ๋ชจ๋ธ๋ง์€ ์œก์•ˆ ๊ฒ€์‚ฌ ์ž๋™ํ™”, ๋ถˆ๋Ÿ‰ ์ œํ’ˆ ์‚ฌ์ „ ํƒ์ง€, ๊ณ ๋น„์šฉ ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ ์ถ”์ • ๋“ฑ ์ œ์กฐ ์‹œ์Šคํ…œ ์ „๋ฐ˜์— ๊ฑธ์ณ ํ™œ์šฉ๋œ๋‹ค. ๋†’์€ ์„ฑ๋Šฅ์˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์–‘์งˆ์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ํ•˜์ง€๋งŒ ์ œ์กฐ ์‹œ์Šคํ…œ์—์„œ ์›ํ•˜๋Š” ์ข…๋ฅ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์›ํ•˜๋Š” ๋งŒํผ ํš๋“ํ•˜๋Š” ๊ฒƒ์€ ํ˜„์‹ค์ ์œผ๋กœ ๊ฑฐ์˜ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ฐ์ดํ„ฐ ํš๋“์˜ ์–ด๋ ค์›€์€ ํฌ๊ฒŒ ์„ธ๊ฐ€์ง€ ์›์ธ์— ์˜ํ•ด ๋ฐœ์ƒํ•œ๋‹ค. ์ฒซ๋ฒˆ์งธ๋กœ, ๋ผ๋ฒจ๋ง์ด ๋œ ๋ฐ์ดํ„ฐ๋Š” ํ•ญ์ƒ ๋น„์šฉ์„ ์ˆ˜๋ฐ˜ํ•œ๋‹ค๋Š” ์ ์ด๋‹ค. ๋งŽ์€ ๋ฌธ์ œ์—์„œ, ๋ผ๋ฒจ๋ง์€ ์ˆ™๋ จ๋œ ์—”์ง€๋‹ˆ์–ด์— ์˜ํ•ด ์ˆ˜ํ–‰๋˜์–ด์•ผ ํ•˜๊ณ , ์ด๋Š” ํฐ ๋น„์šฉ์„ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ, ๊ฒ€์‚ฌ ๋น„์šฉ ๋•Œ๋ฌธ์— ๋ชจ๋“  ๊ฒ€์‚ฌ๊ฐ€ ๋ชจ๋“  ์ œํ’ˆ์— ๋Œ€ํ•ด ์ˆ˜ํ–‰๋  ์ˆ˜ ์—†๋‹ค. ์ œ์กฐ ์‹œ์Šคํ…œ์—๋Š” ์‹œ๊ฐ„์ , ๊ธˆ์ „์  ์ œ์•ฝ์ด ์กด์žฌํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ์›ํ•˜๋Š” ๋ชจ๋“  ๊ฒ€์‚ฌ ๊ฒฐ๊ณผ๊ฐ’์„ ํš๋“ํ•˜๋Š” ๊ฒƒ์ด ์–ด๋ ต๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ, ์ œ์กฐ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”๊ฐ€ ๋ฐ์ดํ„ฐ ํš๋“์„ ์–ด๋ ต๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ œ์กฐ ํ™˜๊ฒฝ์˜ ๋ณ€ํ™”๋Š” ์ƒ์„ฑ๋˜๋Š” ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ๋ณ€ํ˜•์‹œ์ผœ, ์ผ๊ด€์„ฑ ์žˆ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ถฉ๋ถ„ํžˆ ํš๋“ํ•˜์ง€ ๋ชปํ•˜๊ฒŒ ํ•œ๋‹ค. ์ด๋กœ ์ธํ•ด ์ ์€ ์–‘์˜ ๋ฐ์ดํ„ฐ๋งŒ์œผ๋กœ ๋ชจ๋ธ์„ ์žฌํ•™์Šต์‹œ์ผœ์•ผ ํ•˜๋Š” ์ƒํ™ฉ์ด ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฐ ๋ฐ์ดํ„ฐ ํš๋“์˜ ์–ด๋ ค์›€์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด ๋Šฅ๋™ ํ•™์Šต, ๋Šฅ๋™ ํ”ผ์ณ๊ฐ’ ํš๋“, ๋„๋ฉ”์ธ ์ ์‘ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ๋จผ์ €, ์›จ์ดํผ ๋งต ํŒจํ„ด ๋ถ„๋ฅ˜ ๋ฌธ์ œ์˜ ๋†’์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋Šฅ๋™ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ ์€ ๋ผ๋ฒจ๋ง ๋น„์šฉ์œผ๋กœ ๋†’์€ ์„ฑ๋Šฅ์˜ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‚˜์•„๊ฐ€, ๊ตฐ์ง‘ ๋‹จ์œ„์˜ ๋ผ๋ฒจ๋ง ๋ฐฉ๋ฒ•์„ ๋Šฅ๋™ํ•™์Šต์— ์ ‘๋ชฉํ•˜์—ฌ ๋น„์šฉ ํšจ์œจ์„ฑ์„ ํ•œ์ฐจ๋ก€ ๋” ๊ฐœ์„ ํ•œ๋‹ค. ์ œํ’ˆ ๋ถˆ๋Ÿ‰ ์˜ˆ์ธก์— ํ™œ์šฉ๋˜๋Š” ๊ฒ€์‚ฌ ๋น„์šฉ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋Šฅ๋™ ๊ฒ€์‚ฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ถˆํ™•์‹ค์„ฑ ์ถ”์ • ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๊ณ ๋น„์šฉ ๊ฒ€์‚ฌ ๋Œ€์ƒ ์ œํ’ˆ์„ ์„ ํƒํ•จ์œผ๋กœ์จ ์ ์€ ๊ฒ€์‚ฌ ๋น„์šฉ์œผ๋กœ ๋†’์€ ์„ฑ๋Šฅ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ๋ฐ˜๋„์ฒด ์ œ์กฐ์˜ ์›จ์ดํผ ๋ถˆ๋Ÿ‰ ์˜ˆ์ธก์—์„œ ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฐœ์ƒํ•˜๋Š” ๋ ˆ์‹œํ”ผ ๋ณ€๊ฒฝ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ๋„๋ฉ”์ธ ์ ์‘ ๋ฐฉ๋ฒ•์„ ํ™œ์šฉํ•œ๋‹ค. ๋น„๊ต์‚ฌ ๋„๋ฉ”์ธ ์ ์‘๊ณผ ๋ฐ˜๊ต์‚ฌ ๋„๋ฉ”์ธ ์ ์‘์˜ ์ˆœ์ฐจ์ ์ธ ์ ์šฉ์„ ํ†ตํ•ด ๋ ˆ์‹œํ”ผ ๋ณ€๊ฒฝ์— ์˜ํ•œ ์„ฑ๋Šฅ ์ €ํ•˜๋ฅผ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ค์ œ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ์ œ์กฐ์‹œ์Šคํ…œ์˜ ๋ฐ์ดํ„ฐ ํš๋“ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ณ  ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ๋†’์ผ ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.1. Introduction 1 2. Literature Review 9 2.1 Review of Related Methodologies 9 2.1.1 Active Learning 9 2.1.2 Active Feature-value Acquisition 11 2.1.3 Domain Adaptation 14 2.2 Review of Predictive Modelings in Manufacturing 15 2.2.1 Wafer Map Pattern Classification 15 2.2.2 Fault Detection and Classification 16 3. Active Learning for Wafer Map Pattern Classification 19 3.1 Problem Description 19 3.2 Proposed Method 21 3.2.1 System overview 21 3.2.2 Prediction model 25 3.2.3 Uncertainty estimation 25 3.2.4 Query wafer selection 29 3.2.5 Query wafer labeling 30 3.2.6 Model update 30 3.3 Experiments 31 3.3.1 Data description 31 3.3.2 Experimental design 31 3.3.3 Results and discussion 34 4. Active Cluster Annotation for Wafer Map Pattern Classification 42 4.1 Problem Description 42 4.2 Proposed Method 44 4.2.1 Clustering of unlabeled data 46 4.2.2 CNN training with labeled data 48 4.2.3 Cluster-level uncertainty estimation 49 4.2.4 Query cluster selection 50 4.2.5 Cluster-level annotation 50 4.3 Experiments 51 4.3.1 Data description 51 4.3.2 Experimental setting 51 4.3.3 Clustering results 53 4.3.4 Classification performance 54 4.3.5 Analysis for label noise 57 5. Active Inspection for Fault Prediction 60 5.1 Problem Description 60 5.2 Proposed Method 65 5.2.1 Active inspection framework 65 5.2.2 Acquisition based on Expected Prediction Change 68 5.3 Experiments 71 5.3.1 Data description 71 5.3.2 Fault prediction models 72 5.3.3 Experimental design 73 5.3.4 Results and discussion 74 6. Adaptive Fault Detection for Recipe Transition 76 6.1 Problem Description 76 6.2 Proposed Method 78 6.2.1 Overview 78 6.2.2 Unsupervised adaptation phase 81 6.2.3 Semi-supervised adaptation phase 83 6.3 Experiments 85 6.3.1 Data description 85 6.3.2 Experimental setting 85 6.3.3 Performance degradation caused by recipe transition 86 6.3.4 Effect of unsupervised adaptation 87 6.3.5 Effect of semi-supervised adaptation 88 7. Conclusion 91 7.1 Contributions 91 7.2 Future work 94Docto

    Deep CNN-Based Automated Optical Inspection for Aerospace Components

    Get PDF
    ABSTRACT The defect detection problem is of outmost importance in high-tech industries such as aerospace manufacturing and is widely employed using automated industrial quality control systems. In the aerospace manufacturing industry, composite materials are extensively applied as structural components in civilian and military aircraft. To ensure the quality of the product and high reliability, manual inspection and traditional automatic optical inspection have been employed to identify the defects throughout production and maintenance. These inspection techniques have several limitations such as tedious, time- consuming, inconsistent, subjective, labor intensive, expensive, etc. To make the operation effective and efficient, modern automated optical inspection needs to be preferred. In this dissertation work, automatic defect detection techniques are tested on three levels using a novel aerospace composite materials image dataset (ACMID). First, classical machine learning models, namely, Support Vector Machine and Random Forest, are employed for both datasets. Second, deep CNN-based models, such as improved ResNet50 and MobileNetV2 architectures are trained on ACMID datasets. Third, an efficient defect detection technique that combines the features of deep learning and classical machine learning model is proposed for ACMID dataset. To assess the aerospace composite components, all the models are trained and tested on ACMID datasets with distinct sizes. In addition, this work investigates the scenario when defective and non-defective samples are scarce and imbalanced. To overcome the problems of imbalanced and scarce datasets, oversampling techniques and data augmentation using improved deep convolutional generative adversarial networks (DCGAN) are considered. Furthermore, the proposed models are also validated using one of the benchmark steel surface defects (SSD) dataset

    YOLOv8 for Defect Inspection of Hexagonal Directed Self-Assembly Patterns: A Data-Centric Approach

    Full text link
    Shrinking pattern dimensions leads to an increased variety of defect types in semiconductor devices. This has spurred innovation in patterning approaches such as Directed self-assembly (DSA) for which no traditional, automatic defect inspection software exists. Machine Learning-based SEM image analysis has become an increasingly popular research topic for defect inspection with supervised ML models often showing the best performance. However, little research has been done on obtaining a dataset with high-quality labels for these supervised models. In this work, we propose a method for obtaining coherent and complete labels for a dataset of hexagonal contact hole DSA patterns while requiring minimal quality control effort from a DSA expert. We show that YOLOv8, a state-of-the-art neural network, achieves defect detection precisions of more than 0.9 mAP on our final dataset which best reflects DSA expert defect labeling expectations. We discuss the strengths and limitations of our proposed labeling approach and suggest directions for future work in data-centric ML-based defect inspection.Comment: 8 pages, 10 figures, accepted for the 38th EMLC Conference 202

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Machine Learning in Manufacturing towards Industry 4.0: From โ€˜For Nowโ€™ to โ€˜Four-Knowโ€™

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, โ€™Four-Knowโ€™ (Know-what, Know-why, Know-when, Know-how) and โ€™Four-Levelโ€™ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    A novel approach for wafer defect pattern classification based on topological data analysis

    Full text link
    In semiconductor manufacturing, wafer map defect pattern provides critical information for facility maintenance and yield management, so the classification of defect patterns is one of the most important tasks in the manufacturing process. In this paper, we propose a novel way to represent the shape of the defect pattern as a finite-dimensional vector, which will be used as an input for a neural network algorithm for classification. The main idea is to extract the topological features of each pattern by using the theory of persistent homology from topological data analysis (TDA). Through some experiments with a simulated dataset, we show that the proposed method is faster and much more efficient in training with higher accuracy, compared with the method using convolutional neural networks (CNN) which is the most common approach for wafer map defect pattern classification. Moreover, our method outperforms the CNN-based method when the number of training data is not enough and is imbalanced
    • โ€ฆ
    corecore