907 research outputs found

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Domain Adaptive Computational Models for Computer Vision

    Get PDF
    abstract: The widespread adoption of computer vision models is often constrained by the issue of domain mismatch. Models that are trained with data belonging to one distribution, perform poorly when tested with data from a different distribution. Variations in vision based data can be attributed to the following reasons, viz., differences in image quality (resolution, brightness, occlusion and color), changes in camera perspective, dissimilar backgrounds and an inherent diversity of the samples themselves. Machine learning techniques like transfer learning are employed to adapt computational models across distributions. Domain adaptation is a special case of transfer learning, where knowledge from a source domain is transferred to a target domain in the form of learned models and efficient feature representations. The dissertation outlines novel domain adaptation approaches across different feature spaces; (i) a linear Support Vector Machine model for domain alignment; (ii) a nonlinear kernel based approach that embeds domain-aligned data for enhanced classification; (iii) a hierarchical model implemented using deep learning, that estimates domain-aligned hash values for the source and target data, and (iv) a proposal for a feature selection technique to reduce cross-domain disparity. These adaptation procedures are tested and validated across a range of computer vision applications like object classification, facial expression recognition, digit recognition, and activity recognition. The dissertation also provides a unique perspective of domain adaptation literature from the point-of-view of linear, nonlinear and hierarchical feature spaces. The dissertation concludes with a discussion on the future directions for research that highlight the role of domain adaptation in an era of rapid advancements in artificial intelligence.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Hierarchical Aligned Cluster Analysis for Temporal Clustering of Human Motion

    Full text link

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Principal Graph and Structure Learning Based on Reversed Graph Embedding

    Full text link
    © 2017 IEEE. Many scientific datasets are of high dimension, and the analysis usually requires retaining the most important structures of data. Principal curve is a widely used approach for this purpose. However, many existing methods work only for data with structures that are mathematically formulated by curves, which is quite restrictive for real applications. A few methods can overcome the above problem, but they either require complicated human-made rules for a specific task with lack of adaption flexibility to different tasks, or cannot obtain explicit structures of data. To address these issues, we develop a novel principal graph and structure learning framework that captures the local information of the underlying graph structure based on reversed graph embedding. As showcases, models that can learn a spanning tree or a weighted undirected ℓ1 graph are proposed, and a new learning algorithm is developed that learns a set of principal points and a graph structure from data, simultaneously. The new algorithm is simple with guaranteed convergence. We then extend the proposed framework to deal with large-scale data. Experimental results on various synthetic and six real world datasets show that the proposed method compares favorably with baselines and can uncover the underlying structure correctly

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing

    Discriminant feature extraction: exploiting structures within each sample and across samples.

    Get PDF
    Zhang, Wei.Thesis (M.Phil.)--Chinese University of Hong Kong, 2009.Includes bibliographical references (leaves 95-109).Abstract also in Chinese.Abstract --- p.iAcknowledgement --- p.ivChapter 1 --- Introduction --- p.1Chapter 1.1 --- Area of Machine Learning --- p.1Chapter 1.1.1 --- Types of Algorithms --- p.2Chapter 1.1.2 --- Modeling Assumptions --- p.4Chapter 1.2 --- Dimensionality Reduction --- p.4Chapter 1.3 --- Structure of the Thesis --- p.8Chapter 2 --- Dimensionality Reduction --- p.10Chapter 2.1 --- Feature Extraction --- p.11Chapter 2.1.1 --- Linear Feature Extraction --- p.11Chapter 2.1.2 --- Nonlinear Feature Extraction --- p.16Chapter 2.1.3 --- Sparse Feature Extraction --- p.19Chapter 2.1.4 --- Nonnegative Feature Extraction --- p.19Chapter 2.1.5 --- Incremental Feature Extraction --- p.20Chapter 2.2 --- Feature Selection --- p.20Chapter 2.2.1 --- Viewpoint of Feature Extraction --- p.21Chapter 2.2.2 --- Feature-Level Score --- p.22Chapter 2.2.3 --- Subset-Level Score --- p.22Chapter 3 --- Various Views of Feature Extraction --- p.24Chapter 3.1 --- Probabilistic Models --- p.25Chapter 3.2 --- Matrix Factorization --- p.26Chapter 3.3 --- Graph Embedding --- p.28Chapter 3.4 --- Manifold Learning --- p.28Chapter 3.5 --- Distance Metric Learning --- p.32Chapter 4 --- Tensor linear Laplacian discrimination --- p.34Chapter 4.1 --- Motivation --- p.35Chapter 4.2 --- Tensor Linear Laplacian Discrimination --- p.37Chapter 4.2.1 --- Preliminaries of Tensor Operations --- p.38Chapter 4.2.2 --- Discriminant Scatters --- p.38Chapter 4.2.3 --- Solving for Projection Matrices --- p.40Chapter 4.3 --- Definition of Weights --- p.44Chapter 4.3.1 --- Contextual Distance --- p.44Chapter 4.3.2 --- Tensor Coding Length --- p.45Chapter 4.4 --- Experimental Results --- p.47Chapter 4.4.1 --- Face Recognition --- p.48Chapter 4.4.2 --- Texture Classification --- p.50Chapter 4.4.3 --- Handwritten Digit Recognition --- p.52Chapter 4.5 --- Conclusions --- p.54Chapter 5 --- Semi-Supervised Semi-Riemannian Metric Map --- p.56Chapter 5.1 --- Introduction --- p.57Chapter 5.2 --- Semi-Riemannian Spaces --- p.60Chapter 5.3 --- Semi-Supervised Semi-Riemannian Metric Map --- p.61Chapter 5.3.1 --- The Discrepancy Criterion --- p.61Chapter 5.3.2 --- Semi-Riemannian Geometry Based Feature Extraction Framework --- p.63Chapter 5.3.3 --- Semi-Supervised Learning of Semi-Riemannian Metrics --- p.65Chapter 5.4 --- Discussion --- p.72Chapter 5.4.1 --- A General Framework for Semi-Supervised Dimensionality Reduction --- p.72Chapter 5.4.2 --- Comparison to SRDA --- p.74Chapter 5.4.3 --- Advantages over Semi-supervised Discriminant Analysis --- p.74Chapter 5.5 --- Experiments --- p.75Chapter 5.5.1 --- Experimental Setup --- p.76Chapter 5.5.2 --- Face Recognition --- p.76Chapter 5.5.3 --- Handwritten Digit Classification --- p.82Chapter 5.6 --- Conclusion --- p.84Chapter 6 --- Summary --- p.86Chapter A --- The Relationship between LDA and LLD --- p.89Chapter B --- Coding Length --- p.91Chapter C --- Connection between SRDA and ANMM --- p.92Chapter D --- From S3RMM to Graph-Based Approaches --- p.93Bibliography --- p.9
    • …
    corecore