21,479 research outputs found

    Machine learning paradigms for modeling spatial and temporal information in multimedia data mining

    Get PDF
    Multimedia data mining and knowledge discovery is a fast emerging interdisciplinary applied research area. There is tremendous potential for effective use of multimedia data mining (MDM) through intelligent analysis. Diverse application areas are increasingly relying on multimedia under-standing systems. Advances in multimedia understanding are related directly to advances in signal processing, computer vision, machine learning, pattern recognition, multimedia databases, and smart sensors. The main mission of this special issue is to identify state-of-the-art machine learning paradigms that are particularly powerful and effective for modeling and combining temporal and spatial media cues such as audio, visual, and face information and for accomplishing tasks of multimedia data mining and knowledge discovery. These models should be able to bridge the gap between low-level audiovisual features which require signal processing and high-level semantics. A number of papers have been submitted to the special issue in the areas of imaging, artificial intelligence; and pattern recognition and five contributions have been selected covering state-of-the-art algorithms and advanced related topics. The first contribution by D. Xiang et al. “Evaluation of data quality and drought monitoring capability of FY-3A MERSI data” describes some basic parameters and major technical indicators of the FY-3A, and evaluates data quality and drought monitoring capability of the Medium-Resolution Imager (MERSI) onboard the FY-3A. The second contribution by A. Belatreche et al. “Computing with biologically inspired neural oscillators: application to color image segmentation” investigates the computing capabilities and potential applications of neural oscillators, a biologically inspired neural model, to gray scale and color image segmentation, an important task in image understanding and object recognition. The major contribution of this paper is the ability to use neural oscillators as a learning scheme for solving real world engineering problems. The third paper by A. Dargazany et al. entitled “Multibandwidth Kernel-based object tracking” explores new methods for object tracking using the mean shift (MS). A bandwidth-handling MS technique is deployed in which the tracker reach the global mode of the density function not requiring a specific staring point. It has been proven via experiments that the Gradual Multibandwidth Mean Shift tracking algorithm can converge faster than the conventional kernel-based object tracking (known as the mean shift). The fourth contribution by S. Alzu’bi et al. entitled “3D medical volume segmentation using hybrid multi-resolution statistical approaches” studies new 3D volume segmentation using multiresolution statistical approaches based on discrete wavelet transform and hidden Markov models. This system commonly reduced the percentage error achieved using the traditional 2D segmentation techniques by several percent. Furthermore, a contribution by G. Cabanes et al. entitled “Unsupervised topographic learning for spatiotemporal data mining” proposes a new unsupervised algorithm, suitable for the analysis of noisy spatiotemporal Radio Frequency Identification (RFID) data. The new unsupervised algorithm depicted in this article is an efficient data mining tool for behavioral studies based on RFID technology. It has the ability to discover and compare stable patterns in a RFID signal, and is appropriate for continuous learning. Finally, we would like to thank all those who helped to make this special issue possible, especially the authors and the reviewers of the articles. Our thanks go to the Hindawi staff and personnel, the journal Manager in bringing about the issue and giving us the opportunity to edit this special issue

    Perceptual-based textures for scene labeling: a bottom-up and a top-down approach

    Get PDF
    Due to the semantic gap, the automatic interpretation of digital images is a very challenging task. Both the segmentation and classification are intricate because of the high variation of the data. Therefore, the application of appropriate features is of utter importance. This paper presents biologically inspired texture features for material classification and interpreting outdoor scenery images. Experiments show that the presented texture features obtain the best classification results for material recognition compared to other well-known texture features, with an average classification rate of 93.0%. For scene analysis, both a bottom-up and top-down strategy are employed to bridge the semantic gap. At first, images are segmented into regions based on the perceptual texture and next, a semantic label is calculated for these regions. Since this emerging interpretation is still error prone, domain knowledge is ingested to achieve a more accurate description of the depicted scene. By applying both strategies, 91.9% of the pixels from outdoor scenery images obtained a correct label

    Robust Temporally Coherent Laplacian Protrusion Segmentation of 3D Articulated Bodies

    Get PDF
    In motion analysis and understanding it is important to be able to fit a suitable model or structure to the temporal series of observed data, in order to describe motion patterns in a compact way, and to discriminate between them. In an unsupervised context, i.e., no prior model of the moving object(s) is available, such a structure has to be learned from the data in a bottom-up fashion. In recent times, volumetric approaches in which the motion is captured from a number of cameras and a voxel-set representation of the body is built from the camera views, have gained ground due to attractive features such as inherent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of moving bodies along entire sequences, in a temporally-coherent and robust way, has the potential to provide a means of constructing a bottom-up model of the moving body, and track motion cues that may be later exploited for motion classification. Spectral methods such as locally linear embedding (LLE) can be useful in this context, as they preserve "protrusions", i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their separation in a lower dimensional space, making them in this way easier to cluster. In this paper we therefore propose a spectral approach to unsupervised and temporally-coherent body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an embedding space, clusters are propagated in time to ensure coherence, and merged or split to accommodate changes in the body's topology. Experiments on both synthetic and real sequences of dense voxel-set data are shown. This supports the ability of the proposed method to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness to sampling density and shape quality, and its potential for bottom-up model constructionComment: 31 pages, 26 figure
    • …
    corecore