1,664 research outputs found

    Furniture models learned from the WWW: using web catalogs to locate and categorize unknown furniture pieces in 3D laser scans

    Get PDF
    In this article, we investigate how autonomous robots can exploit the high quality information already available from the WWW concerning 3-D models of office furniture. Apart from the hobbyist effort in Google 3-D Warehouse, many companies providing office furnishings already have the models for considerable portions of the objects found in our workplaces and homes. In particular, we present an approach that allows a robot to learn generic models of typical office furniture using examples found in the Web. These generic models are then used by the robot to locate and categorize unknown furniture in real indoor environments

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Improving k-nn search and subspace clustering based on local intrinsic dimensionality

    Get PDF
    In several novel applications such as multimedia and recommender systems, data is often represented as object feature vectors in high-dimensional spaces. The high-dimensional data is always a challenge for state-of-the-art algorithms, because of the so-called curse of dimensionality . As the dimensionality increases, the discriminative ability of similarity measures diminishes to the point where many data analysis algorithms, such as similarity search and clustering, that depend on them lose their effectiveness. One way to handle this challenge is by selecting the most important features, which is essential for providing compact object representations as well as improving the overall search and clustering performance. Having compact feature vectors can further reduce the storage space and the computational complexity of search and learning tasks. Support-Weighted Intrinsic Dimensionality (support-weighted ID) is a new promising feature selection criterion that estimates the contribution of each feature to the overall intrinsic dimensionality. Support-weighted ID identifies relevant features locally for each object, and penalizes those features that have locally lower discriminative power as well as higher density. In fact, support-weighted ID measures the ability of each feature to locally discriminate between objects in the dataset. Based on support-weighted ID, this dissertation introduces three main research contributions: First, this dissertation proposes NNWID-Descent, a similarity graph construction method that utilizes the support-weighted ID criterion to identify and retain relevant features locally for each object and enhance the overall graph quality. Second, with the aim to improve the accuracy and performance of cluster analysis, this dissertation introduces k-LIDoids, a subspace clustering algorithm that extends the utility of support-weighted ID within a clustering framework in order to gradually select the subset of informative and important features per cluster. k-LIDoids is able to construct clusters together with finding a low dimensional subspace for each cluster. Finally, using the compact object and cluster representations from NNWID-Descent and k-LIDoids, this dissertation defines LID-Fingerprint, a new binary fingerprinting and multi-level indexing framework for the high-dimensional data. LID-Fingerprint can be used for hiding the information as a way of preventing passive adversaries as well as providing an efficient and secure similarity search and retrieval for the data stored on the cloud. When compared to other state-of-the-art algorithms, the good practical performance provides an evidence for the effectiveness of the proposed algorithms for the data in high-dimensional spaces

    Density-based Clustering by Means of Bridge Point Identification

    Get PDF
    Density-based clustering focuses on defining clusters consisting of contiguous regions characterized by similar densities of points. Traditional approaches identify core points first, whereas more recent ones initially identify the cluster borders and then propagate cluster labels within the delimited regions. Both strategies encounter issues in presence of multi-density regions or when clusters are characterized by noisy borders. To overcome the above issues, we present a new clustering algorithm that relies on the concept of bridge point. A bridge point is a point whose neighborhood includes points of different clusters. The key idea is to use bridge points, rather than border points, to partition points into clusters. We have proved that a correct bridge point identification yields a cluster separation consistent with the expectation. To correctly identify bridge points in absence of a priori cluster information we leverage an established unsupervised outlier detection algorithm. Specifically, we empirically show that, in most cases, the detected outliers are actually a superset of the bridge point set. Therefore, to define clusters we spread cluster labels like a wildfire until an outlier, acting as a candidate bridge point, is reached. The proposed algorithm performs statistically better than state-of-the-art methods on a large set of benchmark datasets and is particularly robust to the presence of intra-cluster multiple densities and noisy borders

    Machine learning for Internet of Things data analysis: A survey

    Get PDF
    Rapid developments in hardware, software, and communication technologies have allowed the emergence of Internet-connected sensory devices that provide observation and data measurement from the physical world. By 2020, it is estimated that the total number of Internet-connected devices being used will be between 25 and 50 billion. As the numbers grow and technologies become more mature, the volume of data published will increase. Internet-connected devices technology, referred to as Internet of Things (IoT), continues to extend the current Internet by providing connectivity and interaction between the physical and cyber worlds. In addition to increased volume, the IoT generates Big Data characterized by velocity in terms of time and location dependency, with a variety of multiple modalities and varying data quality. Intelligent processing and analysis of this Big Data is the key to developing smart IoT applications. This article assesses the different machine learning methods that deal with the challenges in IoT data by considering smart cities as the main use case. The key contribution of this study is presentation of a taxonomy of machine learning algorithms explaining how different techniques are applied to the data in order to extract higher level information. The potential and challenges of machine learning for IoT data analytics will also be discussed. A use case of applying Support Vector Machine (SVM) on Aarhus Smart City traffic data is presented for a more detailed exploration.Comment: Digital Communications and Networks (2017
    corecore