1,046 research outputs found

    GaitPrivacyON: Privacy-Preserving Mobile Gait Biometrics using Unsupervised Learning

    Get PDF
    Numerous studies in the literature have already shown the potential of biometrics on mobile devices for authentication purposes. However, it has been shown that, the learning processes associated to biometric systems might expose sensitive personal information about the subjects. This study proposes GaitPrivacyON, a novel mobile gait biometrics verification approach that provides accurate authentication results while preserving the sensitive information of the subject. It comprises two modules: i) two convolutional Autoencoders with shared weights that transform attributes of the biometric raw data, such as the gender or the activity being performed, into a new privacy-preserving representation; and ii) a mobile gait verification system based on the combination of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) with a Siamese architecture. The main advantage of GaitPrivacyON is that the first module (convolutional Autoencoders) is trained in an unsupervised way, without specifying the sensitive attributes of the subject to protect. Two experimental studies have been examinated: i) MotionSense and MobiAct databases; and ii) OU-ISIR database. The experimental results achieved suggest the potential of GaitPrivacyON to significantly improve the privacy of the subject while keeping user authentication results higher than 96.6% Area Under the Curve (AUC). To the best of our knowledge, this is the first mobile gait verification approach that considers privacy-preserving methods trained in an unsupervised way

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201
    • …
    corecore