2 research outputs found

    Exploiting the Natural Dynamics of Series Elastic Robots by Actuator-Centered Sequential Linear Programming

    Full text link
    Series elastic robots are best able to follow trajectories which obey the limitations of their actuators, since they cannot instantly change their joint forces. In fact, the performance of series elastic actuators can surpass that of ideal force source actuators by storing and releasing energy. In this paper, we formulate the trajectory optimization problem for series elastic robots in a novel way based on sequential linear programming. Our framework is unique in the separation of the actuator dynamics from the rest of the dynamics, and in the use of a tunable pseudo-mass parameter that improves the discretization accuracy of our approach. The actuator dynamics are truly linear, which allows them to be excluded from trust-region mechanics. This causes our algorithm to have similar run times with and without the actuator dynamics. We demonstrate our optimization algorithm by tuning high performance behaviors for a single-leg robot in simulation and on hardware for a single degree-of-freedom actuator testbed. The results show that compliance allows for faster motions and takes a similar amount of computation time

    Investigations of a Robotic Testbed with Viscoelastic Liquid Cooled Actuators

    Full text link
    We design, build, and thoroughly test a new type of actuator dubbed viscoelastic liquid cooled actuator (VLCA) for robotic applications. VLCAs excel in the following five critical axes of performance: energy efficiency, torque density, impact resistence, joint position and force controllability. We first study the design objectives and choices of the VLCA to enhance the performance on the needed criteria. We follow by an investigation on viscoelastic materials in terms of their damping, viscous and hysteresis properties as well as parameters related to the long- term performance. As part of the actuator design, we configure a disturbance observer to provide high-fidelity force control to enable a wide range of impedance control capabilities. We proceed to design a robotic system capable to lift payloads of 32.5 kg, which is three times larger than its own weight. In addition, we experiment with Cartesian trajectory control up to 2 Hz with a vertical range of motion of 32 cm while carrying a payload of 10 kg. Finally, we perform experiments on impedance control and mechanical robustness by studying the response of the robotics testbed to hammering impacts and external force interactions.Comment: 11 pages, 10 figure
    corecore