3,691 research outputs found

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    ๊ณต์ปจํ…Œ์ด๋„ˆ๊ด€๋ฆฌ ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ํšจ์œจ์ ์ธ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ, 2021. 2. ๋ฌธ์ผ๊ฒฝ.Due to a remarkable surge in global trade volumes led by maritime transportation, shipping companies should make a great effort in managing their container flows especially in case of carrier-owned containers. To do so, they comprehensively implement empty container management strategies and accelerate the flows in a cost- and time-efficient manner to minimize total relevant costs while serving the maximal level of customers demands. However, many critical issues in container flows universally exist due to high uncertainty in reality and hinder the establishment of an efficient container supply chain. In this dissertation, we fully discuss such issues and provide mathematical models along with specific solution procedures. Three types of container supply chain are presented in the following: (i) a two-way four-echelon container supply chain; (ii) a laden and empty container supply chain under decentralized and centralized policies; (iii) a reliable container supply chain under disruption. These models explicitly deal with high risks embedded in a container supply chain and their computational experiments offer underlying managerial insights for the management in shipping companies. For (i), we study empty container management strategy in a two-way four-echelon container supply chain for bilateral trade between two countries. The strategy reduces high maritime transportation costs and long delivery times due to transshipment. The impact of direct shipping is investigated to determine the number of empty containers to be repositioned among selected ports, number of leased containers, and route selection to satisfy the demands for empty and laden containers for exporters and importers in two regions. A hybrid solution procedure based on accelerated particle swarm optimization and heuristic is presented, and corresponding results are compared. For (ii), we introduce the laden and empty container supply chain model based on three scenarios that differ with regard to tardiness in the return of empty containers and the decision process for the imposition of fees with the goal of determining optimal devanning times. The effectiveness of each type of policy - centralized versus decentralized - is determined through computational experiments that produce key performance measures including the on-time return ratio. Useful managerial insights on the implementation of these polices are derived from the results of sensitivity analyses and comparative studies. For (iii), we develop a reliability model based on container network flow while also taking into account expected transportation costs, including street-turn and empty container repositioning costs, in case of arc- and node-failures. Sensitivity analyses were conducted to analyze the impact of disruption on container supply chain networks, and a benchmark model was used to determine disruption costs. More importantly, some managerial insights on how to establish and maintain a reliable container network flow are also provided.ํ•ด์ƒ ์ˆ˜์†ก์ด ์ฃผ๋„ํ•จ์œผ๋กœ์จ ์ „ ์„ธ๊ณ„ ๋ฌด์—ญ๋Ÿ‰์ด ๊ธ‰์ฆํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํšŒ์‚ฌ ์†Œ์œ  ์ปจํ…Œ์ด๋„ˆ๋Š” ์ปจํ…Œ์ด๋„ˆ ํ๋ฆ„์„ ๊ด€๋ฆฌํ•˜๋Š” ๋ฐ ๋งŽ์€ ๋…ธ๋ ฅ์„ ๊ธฐ์šธ์—ฌ์•ผ ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ด€๋ฆฌ ์ „๋žต์„ ํฌ๊ด„์ ์œผ๋กœ ๊ตฌํ˜„ํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ˆ˜์†ก ๋น„์šฉ ๋ฐ ์‹œ๊ฐ„ ์ ˆ๊ฐ ๋ฐฉ์‹์œผ๋กœ ์ปจํ…Œ์ด๋„ˆ ํ๋ฆ„์„ ์›ํ™œํžˆ ํ•˜์—ฌ ๊ด€๋ จ ์ด๋น„์šฉ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ๋™์‹œ์— ๊ณ ๊ฐ์˜ ์ˆ˜์š”๋ฅผ ์ตœ๋Œ€ํ•œ ์ถฉ์กฑํ•˜๊ฒŒ ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ˜„์‹ค์—์„œ๋Š” ๋†’์€ ๋ถˆํ™•์‹ค์„ฑ ๋•Œ๋ฌธ์— ์ปจํ…Œ์ด๋„ˆ ํ๋ฆ„์— ๋Œ€ํ•œ ๋งŽ์€ ์ฃผ์š”ํ•œ ์ด์Šˆ๊ฐ€ ๋ณดํŽธ์ ์œผ๋กœ ์กด์žฌํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง ๊ตฌ์ถ•์„ ๋ฐฉํ•ดํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์ด์Šˆ์— ๋Œ€ํ•ด ์ „๋ฐ˜์ ์œผ๋กœ ๋…ผ์˜ํ•˜๊ณ  ์ ์ ˆํ•œ ํ•ด๋ฒ•๊ณผ ํ•จ๊ป˜ ์ˆ˜๋ฆฌ ๋ชจํ˜•์„ ์ œ๊ณตํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€ ์œ ํ˜•์˜ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์„ ๋‹ค๋ฃฌ๋‹ค. ๋จผ์ € (i) ์–‘๋ฐฉํ–ฅ ๋„ค ๋‹จ๊ณ„ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง, (ii) ๋ถ„๊ถŒํ™” ๋ฐ ์ค‘์•™ ์ง‘์ค‘ํ™” ์ •์ฑ…์— ๋”ฐ๋ฅธ ์ โˆ™๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง; ๊ทธ๋ฆฌ๊ณ  (iii) disruption ์ƒํ™ฉ ์†์—์„œ ์‹ ๋ขฐ์„ฑ์„ ๊ณ ๋ คํ•˜๋Š” ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•œ ์„ธ ๊ฐ€์ง€ ๋ชจํ˜•์€ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์— ๋‚ด์žฌ ๋œ ๋†’์€ ์œ„ํ—˜์„ ์ง์ ‘ ๋‹ค๋ฃจ๋ฉฐ ๊ณ„์‚ฐ ์‹คํ—˜์€ ํ•ด์šด ํšŒ์‚ฌ์˜ ๊ฒฝ์˜์ง„์ด๋‚˜ ๊ด€๊ณ„์ž๋ฅผ ์œ„ํ•ด ์ฃผ์š”ํ•œ ๊ด€๋ฆฌ ์ธ์‚ฌ์ดํŠธ๋ฅผ ์ œ๊ณตํ•œ๋‹ค. (i)์˜ ๊ฒฝ์šฐ, ๋‘ ์ง€์—ญ ๊ฐ„ ์–‘์ž ๋ฌด์—ญ์„ ์œ„ํ•œ ์–‘๋ฐฉํ–ฅ ๋„ค ๋‹จ๊ณ„ ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง์—์„œ ๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ด€๋ฆฌ ์ „๋žต์„ ์—ฐ๊ตฌํ•œ๋‹ค. ์ด ์ „๋žต์€ ํ™˜์ ์œผ๋กœ ์ธํ•œ ๋†’์€ ํ•ด์ƒ ์šด์†ก ๋น„์šฉ๊ณผ ๊ธด ๋ฐฐ์†ก ์‹œ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์งํ•ญ ์ˆ˜์†ก์˜ ์˜ํ–ฅ์„ ์กฐ์‚ฌํ•˜์—ฌ ์„ ํƒ๋œ ํ•ญ๊ตฌ ์ค‘ ์žฌ๋ฐฐ์น˜ ํ•  ๊ณต ์ปจํ…Œ์ด๋„ˆ ์ˆ˜, ์ž„๋Œ€ ์ปจํ…Œ์ด๋„ˆ ์ˆ˜, ๋‘ ์ง€์—ญ์˜ ์ˆ˜์ถœ์—…์ž์™€ ์ˆ˜์ž…์—…์ž์˜ ์ โˆ™๊ณต ์ปจํ…Œ์ด๋„ˆ ๋Œ€ํ•œ ์ˆ˜์š”๋ฅผ ๋งŒ์กฑํ•˜๊ธฐ ์œ„ํ•œ ๊ฒฝ๋กœ ์„ ํƒ์„ ๊ฒฐ์ •ํ•˜๊ฒŒ ๋œ๋‹ค. APSO ๋ฐ ํœด๋ฆฌ์Šคํ‹ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ•ด๋ฒ•์„ ์ œ์‹œํ•˜๋ฉฐ ๋น„๊ต ์‹คํ—˜์„ ํ•˜์˜€๋‹ค. (ii)์˜ ๊ฒฝ์šฐ ์ตœ์  devanning time ๊ฒฐ์ •์„ ๋ชฉํ‘œ๋กœ ๊ณต ์ปจํ…Œ์ด๋„ˆ์˜ ๋ฐ˜ํ™˜ ์ง€์—ฐ๊ณผ ํ•ด๋‹น ์ˆ˜์ˆ˜๋ฃŒ ๋ถ€๊ณผ ๊ฒฐ์ • ํ”„๋กœ์„ธ์Šค์™€ ๊ด€๋ จํ•˜์—ฌ ์„œ๋กœ ๋‹ค๋ฅธ ์„ธ ๊ฐ€์ง€ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ โˆ™๊ณต ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง ๋ชจํ˜•์„ ์ œ์‹œํ•œ๋‹ค. ๊ฐ ์œ ํ˜•์˜ ์ •์ฑ…์ (๋ถ„๊ถŒํ™” ๋ฐ ์ค‘์•™ ์ง‘์ค‘ํ™”) ํšจ๊ณผ๋Š” ์ •์‹œ ๋ฐ˜ํ™˜์œจ์„ ํฌํ•จํ•œ ์ฃผ์š” ์„ฑ๋Šฅ ์ธก์ •์„ ๊ณ ๋ คํ•˜๋Š” ๊ณ„์‚ฐ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒฐ์ •๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •์ฑ… ์‹คํ–‰์— ๋Œ€ํ•œ ์œ ์šฉํ•œ ๊ด€๋ฆฌ ์ธ์‚ฌ์ดํŠธ๋Š” ๋ฏผ๊ฐ๋„ ๋ถ„์„ ๋ฐ ๋น„๊ต ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ์—์„œ ๋„์ถœํ•œ๋‹ค. (iii)์˜ ๊ฒฝ์šฐ, ๋ณธ ๋…ผ๋ฌธ์€ ์ปจํ…Œ์ด๋„ˆ ๋„คํŠธ์›Œํฌ ํ๋ฆ„์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์‹ ๋ขฐ์„ฑ ๋ชจํ˜•์„ ๊ฐœ๋ฐœํ•˜๋Š” ๋™์‹œ์— ์•„ํฌ ๋ฐ ๋…ธ๋“œ failure๊ฐ€ ์žˆ์„ ๋•Œ street-turn ๋ฐ ๊ณต ์ปจํ…Œ์ด๋„ˆ ์žฌ๋ฐฐ์น˜ ๋น„์šฉ์„ ํฌํ•จํ•œ ๊ธฐ๋Œ€ ์ด ๋น„์šฉ์„ ๊ตฌํ•œ๋‹ค. ์ค‘๋‹จ์ด ์ปจํ…Œ์ด๋„ˆ ๊ณต๊ธ‰๋ง ๋„คํŠธ์›Œํฌ์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•ด ๋ฏผ๊ฐ๋„ ๋ถ„์„์„ ์ˆ˜ํ–‰ํ–ˆ์œผ๋ฉฐ disruption ๋น„์šฉ์„ ๊ฒฐ์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋ฒค์น˜๋งˆํฌ ๋ชจํ˜•์„ ํ™œ์šฉํ•œ๋‹ค. ๋”๋ถˆ์–ด ์‹ ๋ขฐ์„ฑ์„ ๊ณ ๋ คํ•œ ์ปจํ…Œ์ด๋„ˆ ๋„คํŠธ์›Œํฌ ํ๋ฆ„์„ ๊ตฌ์ถ•ํ•˜๊ณ  ์‹ ๋ขฐ์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•œ ๊ด€๋ฆฌ์  ์ธ์‚ฌ์ดํŠธ๋„ ์ œ๊ณตํ•œ๋‹ค.Abstract i Contents ii List of Tables vi List of Figures viii 1. Introduction 1 1.1 Empty Container Repositioning Problem 1 1.2 Reliability Problem 3 1.3 Research Motivation and Contributions 4 1.4 Outline of the Dissertation 7 2. Two-Way Four-Echelon Container Supply Chain 8 2.1 Problem Description and Literature Review 8 2.2 Mathematical Model for the TFESC 15 2.2.1 Overview and Assumptions 15 2.2.2 Notation and Formulation 19 2.3 Solution Procedure for the TFESC 25 2.3.1 Pseudo-Function-based Optimization Problem 25 2.3.2 Objective Function Evaluation 28 2.3.3 Heuristics for Reducing the Number of Leased Containers 32 2.3.4 Accelerated Particle Swarm Optimization 34 2.4 Computational Experiments 37 2.4.1 Heuristic Performances 39 2.4.2 Senstivity Analysis of Varying Periods 42 2.4.3 Senstivity Analysis of Varying Number of Echelons 45 2.5 Summary 48 3. Laden and Empty Container Supply Chain under Decentralized and Centralized Policies 50 3.1 Problem Description and Literature Review 50 3.2 Scenario-based Model for the LESC-DC 57 3.3 Model Development for the LESC-DC 61 3.3.1 Centralized Policy 65 3.3.2 Decentralized Policies (Policies I and II) 67 3.4 Computational Experiments 70 3.4.1 Numerical Exmpale 70 3.4.2 Sensitivity Analysis of Varying Degree of Risk in Container Return 72 3.4.3 Sensitivity Analysis of Increasing L_0 74 3.4.4 Sensitivity Analysis of Increasing t_r 76 3.4.5 Sensitivity Analysis of Decreasing es and Increasing e_f 77 3.4.6 Sensitivity Analysis of Discounting ใ€–pnใ€—_{f1} and ใ€–pnใ€—_{f2} 78 3.4.7 Sensitivity Analysis of Different Container Fleet Sizes 79 3.5 Managerial Insights 81 3.6 Summary 83 4. Reliable Container Supply Chain under Disruption 84 4.1 Problem Description and Literature Review 84 4.2 Mathematical Model for the RCNF 90 4.3 Reliability Model under Disruption 95 4.3.1 Designing the Patterns of q and s 95 4.3.2 Objective Function for the RCNF Model 98 4.4 Computational Experiments 103 4.4.1 Sensitivity Analysis of Expected Failure Costs 106 4.4.2 Sensitivity Analysis of Different Network Structures 109 4.4.3 Sensitivity Analysis of Demand-Supply Variation 112 4.4.4 Managerial Insights 115 4.5 Summary 116 5. Conclusions and Future Research 117 Appendices 120 A Proof of Proposition 3.1 121 B Proof of Proposition 3.2 124 C Proof of Proposition 3.3 126 D Sensitivity Analyses for Results 129 E Data for Sensitivity Analyses 142 Bibliography 146 ๊ตญ๋ฌธ์ดˆ๋ก 157 ๊ฐ์‚ฌ์˜ ๊ธ€ 160Docto

    A Two-Echelon Location-inventory Model for a Multi-product Donation-demand Driven Industry

    Get PDF
    This study involves a joint bi-echelon location inventory model for a donation-demand driven industry in which Distribution Centers (DC) and retailers (R) exist. In this model, we confine the variables of interest to include; coverage radius, service level, and multiple products. Each retailer has two classes of product flowing to and from its assigned DC i.e. surpluses and deliveries. The proposed model determines the number of DCs, DC locations, and assignments of retailers to those DCs so that the total annual cost including: facility location costs, transportation costs, and inventory costs are minimized. Due to the complexity of problem, the proposed model structure allows for the relaxation of complicating terms in the objective function and the use of robust branch-and-bound heuristics to solve the non-linear, integer problem. We solve several numerical example problems and evaluate solution performance

    Periodic Review, Push Inventory Policies for Remanufacturing

    Get PDF
    Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. This research is focused on product recovery, and in particular on production control and inventory management in the remanufacturing context. We study a remanufacturing facility that receives a stream of returned products according to a Poisson process. Demand is uncertain and also follows a Poisson process. The decision problems for the remanufacturing facility are when to release returned products to the remanufacturing line and how many new products to manufacture. We assume that remanufactured products are as good as new. In this paper, we employ a "push" policy that combines these two decisions. It is well known that the optimal policy parameters are difficult to find analytically; therefore, we develop several heuristics based on traditional inventory models. We also investigate the performance of the system as a function of return rates, backorder costs and manufacturing and remanufacturing lead times; and we develop approximate lower and upper bounds on the optimal solution. We illustrate and explain some counter-intuitive results and we test the performance of the heuristics on a set of sample problems. We find that the average error of the heuristics is quite low.inventory;reverse logistics;remanufacturing;environment;heuristics

    Freight transportation planning in platform service supply chain considering carbon emissions

    Get PDF
    The online-to-offline (O2O) platform is becoming increasingly popular in today's market. This study investigates the decision-making problem of an O2O freight platform facing uncertain demand and carbon emission constraints to achieve sustainable development and establish an environment-friendly image. By receiving customer orders online and then delivering them offline, the platform chooses the optimal dispatching time and pricing level to maximize its profit under a limited carbon cap. We consider a stochastic model with two kinds of demand functions, i.e., additive and multiplicative cases, and solve the optimization problems. By adopting a data set from a leading O2O freight platform in China, we find that the proposed model can effectively increase the revenue of the platform by more than 20 % if the platform increases the price appropriately. The results further show that market parameters such as potential market size and price elasticity have a more significant influence on the price decision than logistics parameters such as the fixed shipping cost and holding cost per unit volume per unit time, while logistics parameters affect the dispatching time decision more significantly than market parameters. With respect to the profit, as the carbon cap increases, the profit of the platform first climbs up to a peak point and then decreases with the further increase of the cap due to rising inventory holding costs. Furthermore, the O2O platform can benefit from a large-scale market and thus might suffer a loss at its start-up stage. Our study contributes to the literature on the O2O platform and the freight transportation planning with the consideration of sustainable development

    Analytical model for large-scale design of sidewalk delivery robot systems

    Full text link
    With the rise in demand for local deliveries and e-commerce, robotic deliveries are being considered as efficient and sustainable solutions. However, the deployment of such systems can be highly complex due to numerous factors involving stochastic demand, stochastic charging and maintenance needs, complex routing, etc. We propose a model that uses continuous approximation methods for evaluating service trade-offs that consider the unique characteristics of large-scale sidewalk delivery robot systems used to serve online food deliveries. The model captures both the initial cost and the operation cost of the delivery system and evaluates the impact of constraints and operation strategies on the deployment. By minimizing the system cost, variables related to the system design can be determined. First, the minimization problem is formulated based on a homogeneous area, and the optimal system cost can be derived as a closed-form expression. By evaluating the expression, relationships between variables and the system cost can be directly obtained. We then apply the model in neighborhoods in New York City to evaluate the cost of deploying the sidewalk delivery robot system in a real-world scenario. The results shed light on the potential of deploying such a system in the future

    Effect of Continuity Rate on Multistage Logistic Network Optimization under Disruption Risk

    Get PDF
    Modern companies have been facing devastating impacts from unexpected events such as demand uncertainties, natural disasters, and terrorist attacks due to the increasing global supply chain complexity. This paper proposes a multi stage logistic network model under disruption risk. To formulate the problem practically, we consider the effect of continuity rate, which is defined as a percentage of ability of the facility to provide backup allocation to customers in the abnormal situation and affect the investments and operational costs. Then we vary the fixed charge for opening facilities and the operational cost according to the continuity rate. The operational level of the company decreases below the normal condition when disruption occurs. The backup source after the disruption is recovered not only as soon as possible, but also as much as possible. This is a concept of the business continuity plan to reduce the recovery time objective such a continuity rate will affect the investments and operational costs. Through numerical experiments, we have shown the proposed idea is capable of designing a resilient logistic network available for business continuity management/plan

    An Allocation-Routing Optimization Model for Integrated Solid Waste Management

    Get PDF
    Integrated smart waste management (ISWM) is an innovative and technologically advanced approach to managing and collecting waste. It is based on the Internet of Things (IoT) technology, a network of interconnected devices that communicate and exchange data. The data collected from IoT devices helps municipalities to optimize their waste management operations. They can use the information to schedule waste collections more efficiently and plan their routes accordingly. In this study, we consider an ISWM framework for the collection, recycling, and recovery steps to improve the performance of the waste system. Since ISWM typically involves the collaboration of various stakeholders and is affected by different sources of uncertainty, a novel multi-objective model is proposed to maximize the probabilistic profit of the network while minimizing the total travel time and transportation costs. In the proposed model, the chance-constrained programming approach is applied to deal with the profit uncertainty gained from waste recycling and recovery activities. Furthermore, some of the most proficient multi-objective meta-heuristic algorithms are applied to address the complexity of the problem. For optimal adjustment of parameter values, the Taguchi parameter design method is utilized to improve the performance of the proposed optimization algorithm. Finally, the most reliable algorithm is determined based on the Best Worst Method (BWM)
    • โ€ฆ
    corecore