24 research outputs found

    Exploiting Natural On-chip Redundancy for Energy Efficient Memory and Computing

    Get PDF
    Power density is currently the primary design constraint across most computing segments and the main performance limiting factor. For years, industry has kept power density constant, while increasing frequency, lowering transistors supply (Vdd) and threshold (Vth) voltages. However, Vth scaling has stopped because leakage current is exponentially related to it. Transistor count and integration density keep doubling every process generation (Moore’s Law), but the power budget caps the amount of hardware that can be active at the same time, leading to dark silicon. With each new generation, there are more resources available, but we cannot fully exploit their performance potential. In the last years, different research trends have explored how to cope with dark silicon and unlock the energy efficiency of the chips, including Near-Threshold voltage Computing (NTC) and approximate computing. NTC aggressively lowers Vdd to values near Vth. This allows a substantial reduction in power, as dynamic power scales quadratically with supply voltage. The resultant power reduction could be used to activate more chip resources and potentially achieve performance improvements. Unfortunately, Vdd scaling is limited by the tight functionality margins of on-chip SRAM transistors. When scaling Vdd down to values near-threshold, manufacture-induced parameter variations affect the functionality of SRAM cells, which eventually become not reliable. A large amount of emerging applications, on the other hand, features an intrinsic error-resilience property, tolerating a certain amount of noise. In this context, approximate computing takes advantage of this observation and exploits the gap between the level of accuracy required by the application and the level of accuracy given by the computation, providing that reducing the accuracy translates into an energy gain. However, deciding which instructions and data and which techniques are best suited for approximation still poses a major challenge. This dissertation contributes in these two directions. First, it proposes a new approach to mitigate the impact of SRAM failures due to parameter variation for effective operation at ultra-low voltages. We identify two levels of natural on-chip redundancy: cache level and content level. The first arises because of the replication of blocks in multi-level cache hierarchies. We exploit this redundancy with a cache management policy that allocates blocks to entries taking into account the nature of the cache entry and the use pattern of the block. This policy obtains performance improvements between 2% and 34%, with respect to block disabling, a technique with similar complexity, incurring no additional storage overhead. The latter (content level redundancy) arises because of the redundancy of data in real world applications. We exploit this redundancy compressing cache blocks to fit them in partially functional cache entries. At the cost of a slight overhead increase, we can obtain performance within 2% of that obtained when the cache is built with fault-free cells, even if more than 90% of the cache entries have at least a faulty cell. Then, we analyze how the intrinsic noise tolerance of emerging applications can be exploited to design an approximate Instruction Set Architecture (ISA). Exploiting the ISA redundancy, we explore a set of techniques to approximate the execution of instructions across a set of emerging applications, pointing out the potential of reducing the complexity of the ISA, and the trade-offs of the approach. In a proof-of-concept implementation, the ISA is shrunk in two dimensions: Breadth (i.e., simplifying instructions) and Depth (i.e., dropping instructions). This proof-of-concept shows that energy can be reduced on average 20.6% at around 14.9% accuracy loss

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Reliable Design of Three-Dimensional Integrated Circuits

    Get PDF

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Exponential families on resource-constrained systems

    Get PDF
    This work is about the estimation of exponential family models on resource-constrained systems. Our main goal is learning probabilistic models on devices with highly restricted storage, arithmetic, and computational capabilities—so called, ultra-low-power devices. Enhancing the learning capabilities of such devices opens up opportunities for intelligent ubiquitous systems in all areas of life, from medicine, over robotics, to home automation—to mention just a few. We investigate the inherent resource consumption of exponential families, review existing techniques, and devise new methods to reduce the resource consumption. The resource consumption, however, must not be reduced at all cost. Exponential families possess several desirable properties that must be preserved: Any probabilistic model encodes a conditional independence structure—our methods keep this structure intact. Exponential family models are theoretically well-founded. Instead of merely finding new algorithms based on intuition, our models are formalized within the framework of exponential families and derived from first principles. We do not introduce new assumptions which are incompatible with the formal derivation of the base model, and our methods do not rely on properties of particular high-level applications. To reduce the memory consumption, we combine and adapt reparametrization and regularization in an innovative way that facilitates the sparse parametrization of high-dimensional non-stationary time-series. The procedure allows us to load models in memory constrained systems, which would otherwise not fit. We provide new theoretical insights and prove that the uniform distance between the data generating process and our reparametrized solution is bounded. To reduce the arithmetic complexity of the learning problem, we derive the integer exponential family, based on the very definition of sufficient statistics and maximum entropy estimation. New integer-valued inference and learning algorithms are proposed, based on variational inference, proximal optimization, and regularization. The benefit of this technique is larger, the weaker the underlying system is, e.g., the probabilistic inference on a state-of-the-art ultra-lowpower microcontroller can be accelerated by a factor of 250. While our integer inference is fast, the underlying message passing relies on the variational principle, which is inexact and has unbounded error on general graphs. Since exact inference and other existing methods with bounded error exhibit exponential computational complexity, we employ near minimax optimal polynomial approximations to yield new stochastic algorithms for approximating the partition function and the marginal probabilities. Changing the polynomial degree allows us to control the complexity and the error of our new stochastic method. We provide an error bound that is parametrized by the number of samples, the polynomial degree, and the norm of the model’s parameter vector. Moreover, important intermediate quantities can be precomputed and shared with the weak computational device to reduce the resource requirement of our method even further. All new techniques are empirically evaluated on synthetic and real-world data, and the results confirm the properties which are predicted by our theoretical derivation. Our novel techniques allow a broader range of models to be learned on resource-constrained systems and imply several new research possibilities

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Scene Parsing using Multiple Modalities

    Get PDF
    Scene parsing is the task of assigning a semantic class label to the elements of a scene. It has many applications in autonomous systems when we need to understand the visual data captured from our environment. Different sensing modalities, such as RGB cameras, multi-spectral cameras and Lidar sensors, can be beneficial when pursuing this goal. Scene analysis using multiple modalities aims at leveraging complementary information captured by multiple sensing modalities. When multiple modalities are used together, the strength of each modality can combat the weaknesses of other modalities. Therefore, working with multiple modalities enables us to use powerful tools for scene analysis. However, possible gains of using multiple modalities come with new challenges such as dealing with misalignments between different modalities. In this thesis, our aim is to take advantage of multiple modalities to improve outdoor scene parsing and address the associated challenges. We initially investigate the potential of multi-spectral imaging for outdoor scene analysis. Our approach is to combine the discriminative strength of the multi-spectral signature in each pixel and the corresponding nature of the surrounding texture. Many materials appearing similar if viewed by a common RGB camera, will show discriminating properties if viewed by a camera capturing a greater number of separated wavelengths. When using imagery data for scene parsing, a number of challenges stem from, e.g., color saturation, shadow and occlusion. To address such challenges, we focus on scene parsing using multiple modalities, panoramic RGB images and 3D Lidar data in particular, and propose a multi-view approach to select the best 2D view that describes each element in the 3D point cloud data. Keeping our focus on using multiple modalities, we then introduce a multi-modal graphical model to address the problems of scene parsing using 2D3D data exhibiting extensive many-to-one correspondences. Existing methods often impose a hard correspondence between the 2D and 3D data, where the 2D and 3D corresponding regions are forced to receive identical labels. This results in performance degradation due to misalignments, 3D-2D projection errors and occlusions. We address this issue by defining a graph over the entire set of data that models soft correspondences between the two modalities. This graph encourages each region in a modality to leverage the information from its corresponding regions in the other modality to better estimate its class label. Finally, we introduce latent nodes to explicitly model inconsistencies between the modalities. The latent nodes allow us not only to leverage information from various domains in order to improve the labeling of the modalities, but also to cut the edges between inconsistent regions. To eliminate the need for hand tuning the parameters of our model, we propose to learn potential functions from training data. In addition, to demonstrate the benefits of the proposed approaches on publicly available multi-modality datasets, we introduce a new multi-modal dataset of panoramic images and 3D point cloud data captured from outdoor scenes (NICTA/2D3D Dataset)
    corecore