34 research outputs found

    Design of Low-Power Short-Distance Transceiver for Wireless Sensor Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Récepteur Sans-Fil à Basse Consommation et à Modulation Mixte FSK-ASK pour les Dispositifs Médicaux

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) offrent le lien de communications le plus commun afin de mettre au point des dispositifs médicaux implantables dédiés aux interfaces homme-machines. La surveillance en continu des paramètres biologiques des patients nécessite un module de communication sans-fil capable de garantir un échange de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un espace physique réduit. La consommation de puissance des dispositifs implantables joue un rôle important dans les durées de vie des batteries qui nécessitent une chirurgie pour leur remplacement, à moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un récepteur RF à faible puissance et haut-débit de données opérant entre 902 et 928 MHz qui est la bande industrielle-scientifiquemédicale (Industrial, Scientific and Medical) d’Amérique du Nord. Ce récepteur fait partie d’un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et bénéficie d’une nouvelle technique de conversion de modulation par déplacement de fréquence (FSK) en Modulation par déplacement d’amplitude (ASK). Toutes les phases de conception et d’implémentation de la topologie adoptée pour les récepteurs RF sont survolées et discutées dans cette thèse. Les différents étages de circuits sont conçus selon une étude analytique fondée de la modulation FSK et ASK utilisées, ce qui permettra une amélioration des performances notamment le débit de transmission des données et la consommation de puissance. Tous les circuits sont réalisés de façon à ce que la consommation totale et la surface de silicium à réserver soient le minimum possible. Un oscillateur avec verrouillage par injection (Injection-Looked Oscillator - ILO) de faible puissance est réalisé pour assurer la conversion des signaux ASK en FSK. Une combinaison des avantages des deux architectures de modulation d’amplitude et de fréquence, pour les circuits d’émetteurrécepteur sans fil, a été réalisé avec le système proposé. Un module incluant un récepteur de réveil (Wake up) est ajouté afin d’optimiser la consommation totale du circuit en mettant tous les blocs à l’arrêt. Nous avons réalisé un récepteur de réveil RF compact et à faible coût, permettant de très faible niveaux de consommation d’énergie, une bonne sensibilité et une meilleure tolérance aux interférences. Le design est basé sur une topologie homodyne à détection d’enveloppe permettant une transposition directe du signal RF modulé en amplitude en un signal en bande de base. Cette architecture nécessite une architecture peu encombrante à intégrer qui élimine le problème des fréquences image pour la même topologie avec une modulation de fréquence.---------- ABSTRACT ISM band transceiver using a wake-up bloc for wireless body area networks (WBANs) wearable and implantable medical devices is proposed. The system achieves exceptionally low-power consumption and allows a high-data rate by combining the advantages of Frequency-Shift-Keying (FSK) and Amplitude-Shift- Keying (ASK) modulation techniques. The transceiver employs FSK modulation at a data rate of 8 Mbit/s to establish RF link among the medical device and a control unit. Transmitter (Tx) includes a new efficient FSK modulation scheme which offer up to 20 Mb/s of data-rate and dissipates around 0.084 nJ/b. The design of the proposed oscillator achieves variable frequency from 300 kHz to 8 MHz by adjusting the transistors geometry, the on-chip control signal and the tuning capacitors. In the transmitter path, the high-quality LOs Inand Quadrature-phase (I and Q) outputs are produced using a very low-power fully integrated integer-N frequency synthesizer. The architecture of the receiver is inspired from the super-regenerative receiver (SRR) topology which can be used to design a transceiver that is suitable for ASK modulation. In fact, this architecture is based mainly on envelope detection scheme which remove the need to process the carrier phase to reduce the complexity of integrated design. It has been shown too, that the envelope detection scheme is more robust to phase noise than the coherent scheme. The integrated receiver uses on a new FSK-to-ASK conversion technique. The conversion feature that we adopt in the main receiver design is based on the fact that the incident frequency of converter could be differentiated by the amplitude of output signal, which conducts to the frequency-to-amplitude conversion. Thanks to the injection locking oscillator (ILO). the new design of converter is located between the LNA as first part and the envelope detector as second part to benefit from the injection-locking isolation. On-Off-keying (OOK) fully passive wake-up circuit (WuRx) with energy harvesting from Radio Frequency (RF) link is used to optimize the power issipation of the RF transceiver in order to meet the low power requirement. The WuRx operates at the ISM 902–928 MHz. A high efficiency differential rectifier behaves as voltage multiplier. It generates the envelope of the input signal and provides the supply voltage for the rest of blocks including a low-power comparator and reference generators

    Low-Power High Data-Rate Wireless Transmitter For Medical Implantable Devices

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) sont les circuits de communication les plus communs pour établir des interfaces home-machine dédiées aux dispositifs médicaux implantables. Par exemple, la surveillance continue de paramètres de santé des patients souffrant d'épilepsie nécessite un étage de communication sans-fil capable de garantir un transfert de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un faible volume. La consommation de puissance des dispositifs implantables implique une durée de vie limitée de la batterie qui nécessite alors une chirurgie pour son remplacement, a moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un émetteur RF à faible puissance et haut-débit de données opérant à 902-928 MHz de la bande fréquentielle industrielle-scientifique-médicale (ISM) d’Amérique du Nord. Cet émetteur fait partie d'un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et mettables et bénéficie d’une nouvelle approche de modulation par déplacement de fréquence (FSK). Les différentes étapes de conception et d’implémentation de l'architecture proposée pour l'émetteur sont discutées et analysées dans cette thèse. Les blocs de circuits sont réalisés suivant les équations dérivées de la modulation FSK proposée et qui mènera à l'amélioration du débit de données et de la consommation d'énergie. Chaque bloc est implémenté de manière à ce que la consommation d'énergie et la surface de silicium nécessaires soient réduites. L’étage de modulation et le circuit mélangeur ne nécessitent aucun courant continu grâce à leur structure passive.Parmi les circuits originaux, un oscillateur en quadrature contrôlé-en-tension (QVCO) de faible puissance est réalisé pour générer des signaux différentiels en quadrature, rail-à-rail avec deux gammes de fréquences principales de 0.3 à 11.5 MHz et de 3 à 40 MHz. L'étage de sortie énergivore est également amélioré et optimisé pour atteindre une efficacité de puissance de ~ 37%. L'émetteur proposé a été implémenté et fabriqué à la suite de simulations post-layout approfondies.----------ABSTRACT Wireless radio frequency (RF) transceivers are the most common communication front-ends used to realize the human-machine interfaces of medical devices. Continuous monitoring of body behaviour of patients suffering from Epilepsy, for example, requires a wireless communication front-end capable of maintaining a fast, real-time and low-power data communication while implemented in small size. Power budget limitation of the implantable and wearable medical devices obliges engineers to replace or recharge the battery cell through frequent medial surgeries or other power transfer techniques. In this project, a low-power and high data-rate RF transmitter (Tx) operating at North-American Industrial-Scientific-Medical (ISM) frequency band (902-928 MHz) is designed, implemented and tested. This transmitter is a part of a bi-directional transceiver dedicated to the wireless interface of implantable and wearable medical devices and benefits from a new efficient Frequency-Shift Keying (FSK) modulation scheme. Different design and implementation stages of the proposed transmitter architecture are discussed and analyzed in this thesis. The building blocks are realized according to the equations derived from the proposed FSK modulation, which results in improvement in data-rate and power consumption. Each block is implemented such that the power consumption and needed chip area are lowered while the modulation block and the mixer circuit require no DC current due to their passive structure. Among the original blocks, a low-power quadrature voltage-controlled oscillator (QVCO) is achieved to provide differential quadrature rail-to-rail signals with two main frequency ranges of 0.3-11.5 MHz and 3-40 MHz. The power-hungry output stage is also improved and optimized to achieve power efficiency of ~37%. The proposed transmitter was implemented and fabricated following deep characterisation by post-layout simulation. Both simulation and measurement results are discussed and compared with state-of-the-art transmitters showing the contribution of this work in this very popular research field. The Figure-Of-Merit (FOM) was improved, meaning mainly increasing the data-rate and lowering the power consumption of the circuit. The transmitter is implemented using 130 nm CMOS technology with 1.2 V supply voltage. A data-rate of 8 Mb/s was measured while consuming 1.4 mA and resulting in energy consumption of 0.21 nJ/b. The fabricated transmitter has small active silicon area of less than 0.25 mm2

    LOW-POWER FREQUENCY SYNTHESIS BASED ON INJECTION LOCKING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling

    Get PDF
    Two new stepped-frequency continuous wave (SFCW) radar sensor prototypes, based on a coherent super-heterodyne scheme, have been developed using Microwave Integrated Circuits (MICs) and Monolithic Millimeter-Wave Integrated Circuits (MMICs) for various surface and subsurface applications, such as profiling the surface and subsurface of pavements, detecting and localizing small buried Anti-Personnel (AP) mines and measuring the liquid level in a tank. These sensors meet the critical requirements for subsurface and surface measurements including small size, light weight, good accuracy, fine resolution and deep penetration. In addition, two novel wideband microstrip quasi-TEM horn antennae that are capable of integration with a seamless connection have also been designed. Finally, a simple signal processing algorithm, aimed to acquire the in-phase (I) and quadrature (Q) components and to compensate for the I/Q errors, was developed using LabView. The first of the two prototype sensors, named as the microwave SFCW radar sensor operating from 0.6-5.6-GHz, is primarily utilized for assessing the subsurface of pavements. The measured thicknesses of the asphalt and base layers of a pavement sample were very much in agreement with the actual data with less than 0.1-inch error. The measured results on the actual roads showed that the sensor accurately detects the 5-inch asphalt layer of the pavement with a minimal error of 0.25 inches. This sensor represents the first SFCW radar sensor operating from 0.6-5.6-GHz. The other sensor, named as the millimeter-wave SFCW radar sensor, operates in the 29.72-35.7-GHz range. Measurements were performed to verify its feasibility as a surface and sub-surface sensor. The measurement results showed that the sensor has a lateral resolution of 1 inch and a good accuracy in the vertical direction with less than  0.04-inch error. The sensor successfully detected and located AP mines of small sizes buried under the surface of sand with less than 0.75 and 0.08 inches of error in the lateral and vertical directions, respectively. In addition, it also verified that the vertical resolution is not greater than 0.75 inches. This sensor is claimed as the first Ka-band millimeter-wave SFCW radar sensor ever developed for surface and subsurface sensing applications

    Enhancing the Performance of Medical Implant Communication Systems through Cooperative Diversity

    Get PDF
    Battery-operated medical implants—such as pacemakers or cardioverter-defibrillators—have already been widely used in practical telemedicine and telecare applications. However, no solution has yet been found to mitigate the effect of the fading that the in-body to off-body communication channel is subject to. In this paper, we reveal and assess the potential of cooperative diversity to combat fading—hence to improve system performance—in medical implant communication systems. In the particular cooperative communication scenario we consider, multiple cooperating receiver units are installed across the room accommodating the patient with a medical implant inside his/her body. Our investigations have shown that the application of cooperative diversity is a promising approach to enhance the performance of medical implant communication systems in various aspects such as implant lifetime and communication link reliability

    Development of microwave and millimeter-wave integrated-circuit stepped-frequency radar sensors for surface and subsurface profiling

    Get PDF
    Two new stepped-frequency continuous wave (SFCW) radar sensor prototypes, based on a coherent super-heterodyne scheme, have been developed using Microwave Integrated Circuits (MICs) and Monolithic Millimeter-Wave Integrated Circuits (MMICs) for various surface and subsurface applications, such as profiling the surface and subsurface of pavements, detecting and localizing small buried Anti-Personnel (AP) mines and measuring the liquid level in a tank. These sensors meet the critical requirements for subsurface and surface measurements including small size, light weight, good accuracy, fine resolution and deep penetration. In addition, two novel wideband microstrip quasi-TEM horn antennae that are capable of integration with a seamless connection have also been designed. Finally, a simple signal processing algorithm, aimed to acquire the in-phase (I) and quadrature (Q) components and to compensate for the I/Q errors, was developed using LabView. The first of the two prototype sensors, named as the microwave SFCW radar sensor operating from 0.6-5.6-GHz, is primarily utilized for assessing the subsurface of pavements. The measured thicknesses of the asphalt and base layers of a pavement sample were very much in agreement with the actual data with less than 0.1-inch error. The measured results on the actual roads showed that the sensor accurately detects the 5-inch asphalt layer of the pavement with a minimal error of 0.25 inches. This sensor represents the first SFCW radar sensor operating from 0.6-5.6-GHz. The other sensor, named as the millimeter-wave SFCW radar sensor, operates in the 29.72-35.7-GHz range. Measurements were performed to verify its feasibility as a surface and sub-surface sensor. The measurement results showed that the sensor has a lateral resolution of 1 inch and a good accuracy in the vertical direction with less than  0.04-inch error. The sensor successfully detected and located AP mines of small sizes buried under the surface of sand with less than 0.75 and 0.08 inches of error in the lateral and vertical directions, respectively. In addition, it also verified that the vertical resolution is not greater than 0.75 inches. This sensor is claimed as the first Ka-band millimeter-wave SFCW radar sensor ever developed for surface and subsurface sensing applications

    INJECTION-LOCKING TECHNIQUES FOR MULTI-CHANNEL ENERGY EFFICIENT TRANSMITTER

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Digitally-assisted, ultra-low power circuits and systems for medical applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 219-225).In recent years, trends in the medical industry have created a growing demand for a variety of implantable medical devices. At the same time, advances in integrated circuits techniques, particularly in CMOS, have opened possibilities for advanced implantable systems that are very small and consume minimal energy. Minimizing the volume of medical implants is important as it allows for less invasive procedures and greater comfort to patients. Minimizing energy consumption is imperative as batteries must last at least a decade without replacement. Two primary functions that consume energy in medical implants are sensor interfaces that collect information from biomedical signals, and radios that allow the implant to communicate with a base-station outside of the body. The general focus of this work was the development of circuits and systems that minimize the size and energy required to carry out these two functions. The first part of this work focuses on laying down the theoretical framework for an ultra-low power radio, including advances to the literature in the area of super-regeneration. The second part includes the design of a transceiver optimized for medical implants, and its implementation in a CMOS process. The final part describes the design of a sensor interface that leverages novel analog and digital techniques to reduce the system's size and improve its functionality. This final part was developed in conjunction with Marcus Yip.by Jose L. Bohorquez.Ph.D
    corecore