58 research outputs found

    Subthreshold design of ultra low-power analog modules

    Get PDF
    Il consumo di potenza rappresenta l’indicatore chiave delle performance di recenti applicazioni portatili, come dispositivi medici impiantabili o tag RFID passivi, allo scopo di aumentare, rispettivamente, i tempi di funzionamento o i range operativi. La riduzione della tensione di alimentazione si è dimostrata l’approccio migliore per ridurre il consumo di potenza dei sistemi digitali integrati. Al fine di tenere il passo con la riduzione delle tensioni di alimentazione, anche le sezioni analogiche dei sistemi mixed signal devono essere in grado di funzionare con livelli di tensione molto bassi. Di conseguenza, sono richieste nuove metodologie di progettazione analogica e configurazioni circuitali innovative in grado di lavorare con tensioni di alimentazioni bassissime, dissipando una potenza estremamente bassa. Il regime di funzionamento sottosoglia consente di ridurre notevolmente le tensioni applicabili ai dispositivi ed si contraddistingue per i livelli di corrente molto bassi, rispetto al ben noto funzionamento in forte inversione. Queste due caratteristiche sono state sfruttate nella realizzazione di moduli analogici di base ultra low voltage, low power. Tre nuove architetture di riferimenti di tensione, che lavorano con tutti i transistor polarizzati in regime sottosoglia, sono stati fabbricati in tecnologia CMOS 0.18 μm. I tre circuiti si basano sullo stesso principio di funzionamento per compensare gli effetti della variazione della temperatura sulla tensione di riferimento generata. Tramite il principio di funzionamento proposto, la tensione di riferimento può essere approssimata con la differenza delle tensioni di soglia, a temperatura ambiente, dei transistor. Misure sperimentali sono state effettuate su set con più di 30 campioni per ogni configurazione circuitale. Una dettagliata analisi statistica ha dimostrato un consumo medio di potenza che va da pochi nano watt a poche decine di nano watt, mentre la minima tensione di alimentazione, raggiunta da una delle tre configurazioni, è di soli 0.45 V. Le tensioni di riferimento generate sono molto precise rispetto alle variazioni della temperatura e della tensione di alimentazione, infatti sono stati ottenuti coefficienti di temperatura e line sensitivity medi a partire rispettivamente da 165 ppm/°C e 0.065 %/V. Inoltre, è stata trattata anche la progettazione di amplificatori ultra low voltage, low power. Sono state illustrate linee guida dettagliate per la progettazione di amplificatori sottosoglia e le stesse sono state applicate per la realizzazione di un amplificatore a due stadi, con compensazione di Miller, funzionante con una tensione di alimentazione di 0.5 V. I risultati sperimentali dell’op amp proposto, fabbricato in tecnologia CMOS 0.18 μm, hanno mostrato un guadagno DC ad anello aperto di 70 dB, un prodotto banda guadagno di 18 kHz ed un consumo di potenza di soli 75 nW. I risultati delle misure sperimentali dimostrano che gli amplificatori operazionali in sottosoglia rappresentano una soluzione molto interessante nella realizzazione di applicazioni efficienti in termini energetici per gli attuali sistemi elettronici portatili. Dal confronto con amplificatori ultra low power, low voltage presenti in letteratura, si evince che la soluzione proposta offre un miglior compromesso tra velocità, potenza dissipata e capacità di carico

    Low Power, High PSR CMOS Voltage References

    Get PDF
    With integration of various functional modules such as radio frequency (RF) circuits, power management, and high frequency digital and analog circuits into one system on chip (SoC) in recent applications, power supply noise can cause significant system performance deterioration. This makes supply noise rejection of the embedded voltage reference crucial in modern SoC applications. Also the use of resistors in bandgap voltage references makes them less suitable for modern low power and portable applications. This thesis introduces two resistorless sub-1 V, all MOSFET references. The goal is to achieve a high power supply rejection (PSR) over a wide bandwidth not achieved in previous works. This high PSR over wide bandwidth is achieved by using a combination of a feedback technique and an innovative compact MOSFET low pass filter. The two references were fabricated in a standard 0.18 µm CMOS process. The first reference uses a composite transistor in subthreshold to produce a proportional-to-absolute temperature (PTAT) voltage which is converted to a current used to thermally compensate the threshold voltage of a MOSFET in saturation. The second references uses dynamic-threshold voltage MOSFET (DTMOS) to produce a PTAT voltage which is converted to a current used to thermally compensate the threshold voltage of a MOSFET in saturation. The measurement shows that both references consumes a sub-1 µW power across their entire operating temperatures. The first reference achieves a PSR better than 50 dB for frequencies of up to 70 MHz and a 20 ppm/°C temperature coefficient (TC) for temperatures from -35 °C — 80 °C. It has a compact area of 0.0180 mm2 and operates on a supply of 1.2 V — 2.3 V. The second reference achieves a PSR better than 50 dB for frequencies of up to 60 MHz. This reference achieves a TC of 9.33 ppm/°C after trimming for temperatures from -30 °C — 110 °C and a line regulation of 0.076 %/V for a step from 0.8 V to 2 V supply voltage with 360 nW power consumption at room temperature. It has a compact area of 0.0143 mm^2

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    Analog integrated circuit design in ultra-thin oxide CMOS technologies with significant direct tunneling-induced gate current

    Get PDF
    The ability to do mixed-signal IC design in a CMOS technology has been a driving force for manufacturing personal mobile electronic products such as cellular phones, digital audio players, and personal digital assistants. As CMOS has moved to ultra-thin oxide technologies, where oxide thicknesses are less than 3 nm, this type of design has been threatened by the direct tunneling of carriers though the gate oxide. This type of tunneling, which increases exponentially with decreasing oxide thickness, is a source of MOSFET gate current. Its existence invalidates the simplifying design assumption of infinite gate resistance. Its problems are typically avoided by switching to a high-&kappa/metal gate technology or by including a second thick(er) oxide transistor. Both of these solutions come with undesirable increases in cost due to extra mask and processing steps. Furthermore, digital circuit solutions to the problems created by direct tunneling are available, while analog circuit solutions are not. Therefore, it is desirable that analog circuit solutions exist that allow the design of mixed-signal circuits with ultra-thin oxide MOSFETs. This work presents a methodology that develops these solutions as a less costly alternative to high-&kappa/metal gate technologies or thick(er) oxide transistors. The solutions focus on transistor sizing, DC biasing, and the design of current mirrors and differential amplifiers. They attempt to minimize, balance, and cancel the negative effects of direct tunneling on analog design in traditional (non-high-&kappa/metal gate) ultra-thin oxide CMOS technologies. They require only ultra-thin oxide devices and are investigated in a 65 nm CMOS technology with a nominal VDD of 1 V and a physical oxide thickness of 1.25 nm. A sub-1 V bandgap voltage reference that requires only ultra-thin oxide MOSFETs is presented (TC = 251.0 ppm/°C). It utilizes the developed methodology and illustrates that it is capable of suppressing the negative effects of direct tunneling. Its performance is compared to a thick-oxide voltage reference as a means of demonstrating that ultra-thin oxide MOSFETs can be used to build the analog component of a mixed-signal system

    Fully Integrated Voltage Reference Circuits

    Get PDF
    (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014(PhD) -- İstanbul Technical University, Institute of Science and Technology, 2014Gerilim referans devreleri, elektriksel sistemlerde diğer alt blokların çalışmaları için kararlı bir çalışma noktası üretmeleri sebebiyle veri dönüştürücüler (ADC - DAC), frekans sentezleyiciler, DC-DC ve AC-DC dönüştürücüler ve lineer regülatörler gibi pek çok elektriksel sistemin en temel yapı bloklarındandır. İdeal olarak, üretilen bu referans noktası, sıcaklık, üretim süreçleri, besleme gerilim degişimleri ve yükleme etkileri gibi çalışma koşullarından etkilenmemelidir. Bir referans devresinin doğruluğu bahsedilen çalışma koşullarının etkisiyle mutlak değerinden ne kadar saptığı olarak tanımlanır. Modern haberleşme sistemleri ve tüketici ürünlerindeki gelişmeler ile birlikte yüksek entegrasyon ve doğruluklu sistemlere olan talep artmıştır. Tümdevre sistemlerinde, alt blokların çalışma noktalarını belirlemesi nedeniyle özellikle referans devrelerinin performansları bütün sistemin performansının belirlenmesinde önemli rol oynamaktadır. Dolayısıyla yüksek performanslı sistemlere olan talep, bu performansların elde edilmesi için kullanılan düşük geometrili üretim teknolojilerine uygun, yani giderek azalan besleme gerilimleri ile çalışabilecek yüksek doğruluklu referans devrelerine olan talebi de arttırmıştır. Bu nedenle bu çalışmada gerilim referans devre topolojilerine odaklanılmıştır. Bu doğrultuda, öncelikle yüksek doğruluklu, düşük gürültülü gerilim refereans devre topolojileri üzerinde çalışılarak 0.35 um CMOS teknoljisinde farklı tasarımlar yapılmıştır. Bu aşamada temel hedef, yüksek dogrulukluk olarak belirenmiş ve yapılan tasarımlarda, üretim sonrası ayarlamalardan sonra sıcaklık katsayısı 3 ppm/C olabilecek devreler tasarlanmıştır. Ancak, 0.35 um CMOS üretim teknolojisi kullanılması ve kullanılan topolojiler dolayısıyla, devrelerin çalışabileceği minimum besleme gerilim seviyesi 1.8 V ile sınırlı kalmıştır. Devrelerin çektikleri akımlar ise 20-30 uA seviyesindedir. Bu tasarımlar sırasında (triple-well üretim teknlojileri için), önerilen blok gövde izolasyon stratejisi, tasarımı yapılan devrenin gövdesinin tümdevrenin geri kalan kısmından ters kutuplanmış bir jonksiyon diyodu sayesinde izole edilmesine dayanmaktadır ve devrenin gövde gürültüsünden etkilenmesini önemli ölçüde azaltmaktadır. Son olarak, çoğunlukla osilatör devrelerinde uygulanan anahtarlamalı kutuplama tekniği uygulanarak devrelerin düşük frekans gürültü performansının iyileştirilmesi amaçlanmıştır. Çalışmanın geri kalan kısmında, düşük besleme gerilimleriyle çalışabilecek mikron-altı üretim teknolojilerine uygun gerilim referans devre topolojileri üzerine odaklanılmıştır. Bu doğrultuda, iki yeni düşük besleme gerilimli ve düşük güç tüketimli gerilim referans devre topolojisi önerilmiştir. Önerilen topolojiler, 0.18 um CMOS üretim teknolojisinde gerçeklenmiştir. Ölçüm sonuçları, tasarlanan gerilim refarans devrelerinin 0.65 V besleme gerilimi ile çalışabildiğini göstermiştir. Önerilen devre topolojileri ile 0-120 C sıcaklık aralığında, sıcaklık katsayısı 50 ppm/C olan 193 mV seviyesinde referans gerilimleri elde edilmiştir. Devrelerin güç tüketimleri sırasıyla 0.3 uW ve 0.4 uW iken kapladıkları alan 0.2 mm^2 ve 0.08 mm^2 dir. Sonuç olarak, önerilen devre topolojileri ile literatürde yer alan diğer 1V-altı referans devreleri ile karşılatrılabilir seviyede sıcaklık katsayısı olan referans gerilimleri çok daha düşük güç harcamasıyla elde edilmiştir.Voltage references are one of the basic building blocks of many SoCs and mixed-signal ICs such as data converters, voltage regulators and operational amplifiers as they constitute a stable reference voltage for other sub-circuits to generate predictable and repeatable results. Ideally, this reference point should not change with external influences or operating conditions such as temperature, fabrication process variations, power supply variations and transient loading effects. Along with the rapid development of modern communication systems and consumer products, which constitutes the main market for semiconductor industry, the market demand for these System on Chip (SoC) or Mixed Signal ICs to have lower power consumption, higher accuracy and lower cost, and thus, higher integration. Since the performance of the whole system depends strongly to the performance of the reference circuit, this work is focused on fully integrated voltage reference architectures. With this motivation, firstly, different kinds of high precision low noise voltage reference circuits are designed in standard 0.35 um CMOS technology that we have more experience and knowledge of. The essential goal of these studies was high precision and temperature coefficient of the designed voltage reference circuits are on the order of 3 ppm/C with trimming after production. However, since 0.35 um CMOS technology is used in these designs and also due to the chosen topologies their minimum supply voltage can be down to 1.8 V and while current consumption is on the order of 20-30 uA. In the design of the this voltage reference block bulk isolation technique is proposed (for triple-well CMOS processes), in which system blocks are bulk isolated by a reverse biased junction diode from the rest of the die to drastically reduce substrate noise coupling. This is especially important if a very low power voltage reference is designed in a very noisy SoC. Moreover, the switched biasing technique, which is mostly applied to the oscillators, is also implemented to the designed BGR in order to improve the low noise performance of the circuit. The rest of the thesis is focused on new voltage reference topologies that are appropriate for sub-micron technologies operating with low supply voltages. With this motivation two new low voltage and low power voltage reference topologies are proposed. The proposed voltage reference topologies are implemented and fabricated in 0.18 um CMOS technology. Measurement results show that the proposed voltage reference circuits are working properly down to 0.65 V and achieve an output voltage of 193 mV with a temperature coefficient on the order of 50 ppm/C in the temperature range of 0-120C. The total power consumption of the two designed voltage references are 0.3 uW and 0.4 uW at 27 C, while occupying the area of 0.2 mm^2 and 0.08 mm^2, respectively. As a result, the proposed voltage reference topologies generate a reference voltage with comparable level of temperature coefficient and quite low power consumption with respect to the other sub-1V voltage reference circuits reported in the literature.DoktoraPh

    Current-mode processing based Temperature-to-Digital Converters for MEMS applications

    Get PDF
    This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results.This thesis presents novel Temperature-to-Digital Converters (TDCs) designed and fabricated in CMOS technology. These integrated smart temperature sensing circuits are widely employed in the Micro-Electro-Mechanical Systems (MEMS) field in order to mitigate the impact of the ambient temperature on their performance. In this framework, the increasingly stringent demands of the market have led the cost-effectiveness specification of these compensation solutions to an higher and higher level, directly translating into the requirement of more and more compact designs (< 0.1 mm²); in addition to this, considering that the great majority of the systems whose thermal drift needs to be compensated is battery supplied, ultra-low energy-per-conversion (< 10 nJ) is another requirement of primary importance. This thesis provides a detailed description of two different test-chips (mas fuerte and es posible) that have been designed with this orientation and that are the result of three years of research activity; for both devices, the conception, design, layout and testing phases are all described in detail and are supported by simulation and measurement results

    A Current-Mode Multi-Channel Integrating Analog-to-Digital Converter

    Get PDF
    Multi-channel analog to digital converters (ADCs) are required where signals from multiple sensors can be digitized. A lower power per channel for such systems is important in order that when the number of channels is increased the power does not increase drastically. Many applications require signals from current output sensors, such as photosensors and photodiodes to be digitized. Applications for these sensors include spectroscopy and imaging. The ability to digitize current signals without converting currents to voltages saves power, area, and the design time required to implement I-to-V converters. This work describes a novel and unique current-mode multi-channel integrating ADC which processes current signals from sensors and converts it to digital format. The ADC facilitates the processing of current analog signals without the use of transconductors. An attempt has been made also to incorporate voltage-mode techniques into the current-mode design so that the advantages of both techniques can be utilized to augment the performance of the system. Additionally since input signals are in the form of currents, the dynamic range of the ADC is less dependant on the supply voltage. A prototype 4-channel ADC design was fabricated in a 0.5-micron bulk CMOS process. The measurement results for a 10Ksps sampling rate include a DNL, which is less than 0.5 LSB, and a power consumption of less than 2mW per channel

    An ultra wide temperature range R-2R based 8 bit D/A converter for 90nm CMOS technology

    Get PDF
    Digital-to-analog converters have a wide range of applications from converting stored digital/audio signals to data processing and to data acquisition systems. Another application area could be a supporting building block in either cooled or un-cooled Read-out integrated circuits (ROICs). For this aspect, the capability of ultra wide temperature range operation may prove useful providing freedom to the designer and the consumer. In this thesis, design of an 8-bit, fully binary R-2R based digital-to-analog converter is realized with 90nm CMOS technology to operate in a wide temperature range (-200°C to 120°C) to be used in an ongoing Digital Read-out Integrated Circuit (DROIC) for infrared (IR) imaging systems. UWT range of operation is obtained via a temperature compensated voltage reference generator circuit consisting of only MOSFETs. In order to aid the matching of the resistors, a common-centroid layout technique is applied to the resistor core of the circuit which eliminates the process gradients. TSMC's 90nm 1 poly, 9 metal Mixed – Signal RF technology and a power supply of 1.2V are used for this design. For accuracy, the best performance is obtained at the room temperature where the fastest operation is possible at cryogenic temperatures at the expense of precision. It has a DNL and INL of ±0.3LSB at room temperature and ±0.45LSB at 120°C. The DAC can operate up to 20MHz. The circuit dissipates only 0.43mW in full scale range at cryogenic temperatures where 1.1mW at room. It occupies a chip area of only 0.015mm2 [square millimetre]
    corecore