9,957 research outputs found

    Multi-slot Coded ALOHA with Irregular Degree Distribution

    Get PDF
    This paper proposes an improvement of the random multiple access scheme for satellite communication named Multislot coded ALOHA (MuSCA). MuSCA is a generalization of Contention Resolution Diversity Slotted ALOHA (CRDSA). In this scheme, each user transmits several parts of a single codeword of an error correcting code instead of sending replicas. At the receiver level, the decoder collects all these parts and includes them in the decoding process even if they are interfered. In this paper, we show that a high throughput can be obtained by selecting variable code rates and user degrees according to a probability distribution. With an optimal irregular degree distribution, our system achieves a normalized throughput up to 1.43, resulting in a significant gain compared to CRDSA and MuSCA. The spectral efficiency and the implementation issues of the scheme are also analyzed.Comment: 6 pages, 8 figure

    Turbo-Coded Adaptive Modulation Versus Space-Time Trellis Codes for Transmission over Dispersive Channels

    No full text
    Decision feedback equalizer (DFE)-aided turbocoded wideband adaptive quadrature amplitude modulation (AQAM) is proposed, which is capable of combating the temporal channel quality variation of fading channels. A procedure is suggested for determining the AQAM switching thresholds and the specific turbo-coding rates capable of maintaining the target bit-error rate while aiming for achieving a highly effective bits per symbol throughput. As a design alternative, we also employ multiple-input/multiple-output DFE-aided space–time trellis codes, which benefit from transmit diversity and hence reduce the temporal channel quality fluctuations. The performance of both systems is characterized and compared when communicating over the COST 207 typical urban wideband fading channel. It was found that the turbo-coded AQAM scheme outperforms the two-transmitter space–time trellis coded system employing two receivers; although, its performance is inferior to the space–time trellis coded arrangement employing three receivers. Index Terms—Coded adaptive modulation, dispersive channels, space–time trellis codes

    List Decoding Tensor Products and Interleaved Codes

    Full text link
    We design the first efficient algorithms and prove new combinatorial bounds for list decoding tensor products of codes and interleaved codes. We show that for {\em every} code, the ratio of its list decoding radius to its minimum distance stays unchanged under the tensor product operation (rather than squaring, as one might expect). This gives the first efficient list decoders and new combinatorial bounds for some natural codes including multivariate polynomials where the degree in each variable is bounded. We show that for {\em every} code, its list decoding radius remains unchanged under mm-wise interleaving for an integer mm. This generalizes a recent result of Dinur et al \cite{DGKS}, who proved such a result for interleaved Hadamard codes (equivalently, linear transformations). Using the notion of generalized Hamming weights, we give better list size bounds for {\em both} tensoring and interleaving of binary linear codes. By analyzing the weight distribution of these codes, we reduce the task of bounding the list size to bounding the number of close-by low-rank codewords. For decoding linear transformations, using rank-reduction together with other ideas, we obtain list size bounds that are tight over small fields.Comment: 32 page

    Codes for protection from synchronization loss and additive errors

    Get PDF
    Codes for protection from synchronization loss and additive error
    corecore