58 research outputs found

    STABILITY, FINITE-TIME STABILITY AND PASSIVITY CRITERIA FOR DISCRETE-TIME DELAYED NEURAL NETWORKS

    Get PDF
    In this paper, we present the problem of stability, finite-time stability and passivity for discrete-time neural networks (DNNs) with variable delays. For the purposes of stability analysis, an augmented Lyapunov-Krasovskii functional (LKF) with single and double summation terms and several augmented vectors is proposed by decomposing the time-delay interval into two non-equidistant subintervals. Then, by using the Wirtinger-based inequality, reciprocally and extended reciprocally convex combination lemmas, tight estimations for sum terms in the forward difference of LKF are given. In order to relax the existing results, several zero equalities are introduced and stability criteria are proposed in terms of linear matrix inequalities (LMIs). The main objective for the finite-time stability and passivity analysis is how to effectively evaluate the finite-time passivity conditions for DNNs. To achieve this, some weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of LKF, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. Some numerical examples are presented to illustrate the proposed methodology

    Synchronization analysis of coupled fractional-order neural networks with time-varying delays

    Get PDF
    In this paper, the complete synchronization and Mittag-Leffler synchronization problems of a kind of coupled fractional-order neural networks with time-varying delays are introduced and studied. First, the sufficient conditions for a controlled system to reach complete synchronization are established by using the Kronecker product technique and Lyapunov direct method under pinning control. Here the pinning controller only needs to control part of the nodes, which can save more resources. To make the system achieve complete synchronization, only the error system is stable. Next, a new adaptive feedback controller is designed, which combines the Razumikhin-type method and Mittag-Leffler stability theory to make the controlled system realize Mittag-Leffler synchronization. The controller has time delays, and the calculation can be simplified by constructing an appropriate auxiliary function. Finally, two numerical examples are given. The simulation process shows that the conditions of the main theorems are not difficult to obtain, and the simulation results confirm the feasibility of the theorems

    Literature Review on Big Data Analytics Methods

    Get PDF
    Companies and industries are faced with a huge amount of raw data, which have information and knowledge in their hidden layer. Also, the format, size, variety, and velocity of generated data bring complexity for industries to apply them in an efficient and effective way. So, complexity in data analysis and interpretation incline organizations to deploy advanced tools and techniques to overcome the difficulties of managing raw data. Big data analytics is the advanced method that has the capability for managing data. It deploys machine learning techniques and deep learning methods to benefit from gathered data. In this research, the methods of both ML and DL have been discussed, and an ML/DL deployment model for IOT data has been proposed

    Stabilization of Networked Control Systems with Random Delays

    Get PDF

    Adaptive neural control of nonlinear systems with hysteresis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area
    corecore