9,694 research outputs found

    Copula-based dynamic conditional correlation multiplicative error processes : [Version 18 April 2013]

    Get PDF
    We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables’ conditional mean processes using a multiplicative error model we map the resulting residuals into a Gaussian domain using a Gaussian copula. Based on high-frequency volatility, cumulative trading volumes, trade counts and market depth of various stocks traded at the NYSE, we show that the proposed copula-based transformation is supported by the data and allows capturing (multivariate) dynamics in higher order moments. The latter are modeled using a DCC-GARCH specification. We suggest estimating the model by composite maximum likelihood which is sufficiently flexible to be applicable in high dimensions. Strong empirical evidence for time-varying conditional (co-)variances in trading processes supports the usefulness of the approach. Taking these higher-order dynamics explicitly into account significantly improves the goodness-of-fit of the multiplicative error model and allows capturing time-varying liquidity risks

    A Generalized Normal Mean Variance Mixture for Return Processes in Finance

    Get PDF
    Time-changed Brownian motions are extensively applied as mathematical models for asset returns in Finance. Time change is interpreted as a switch to trade-related business time, different from calendar time. Time-changed Brownian motions can be generated by infinite divisible normal mixtures. The standard multivariate normal mean variance mixtures assume a common mixing variable. This corresponds to a multidimensional return process with a unique change of time for all assets under exam. The economic counterpart is uniqueness of trade or business time, which is not in line with empirical evidence. In this paper we propose a new multivariate definition of normal mean-variance mixtures with a flexible dependence structure, based on the economic intuition of both a common and an idiosyncratic component of business time. We analyze both the distribution and the related process. We use the above construction to introduce a multivariate generalized hyperbolic process with generalized hyperbolic margins. We conclude with a stock market example to show the ease of calibration of the model.multivariate normal mean variance mixtures, multivariate generalized hyperbolic distributions, Levy processes, multivariate subordinators

    Monotonic regression based on Bayesian P-splines: an application to estimating price response functions from store-level scanner data

    Get PDF
    Generalized additive models have become a widely used instrument for flexible regression analysis. In many practical situations, however, it is desirable to restrict the flexibility of nonparametric estimation in order to accommodate a presumed monotonic relationship between a covariate and the response variable. For example, consumers usually will buy less of a brand if its price increases, and therefore one expects a brand's unit sales to be a decreasing function in own price. We follow a Bayesian approach using penalized B-splines and incorporate the assumption of monotonicity in a natural way by an appropriate specification of the respective prior distributions. We illustrate the methodology in an empirical application modeling demand for a brand of orange juice and show that imposing monotonicity constraints for own- and cross-item price effects improves the predictive validity of the estimated sales response function considerably

    Flexible modelling in statistics: past, present and future

    Get PDF
    In times where more and more data become available and where the data exhibit rather complex structures (significant departure from symmetry, heavy or light tails), flexible modelling has become an essential task for statisticians as well as researchers and practitioners from domains such as economics, finance or environmental sciences. This is reflected by the wealth of existing proposals for flexible distributions; well-known examples are Azzalini's skew-normal, Tukey's gg-and-hh, mixture and two-piece distributions, to cite but these. My aim in the present paper is to provide an introduction to this research field, intended to be useful both for novices and professionals of the domain. After a description of the research stream itself, I will narrate the gripping history of flexible modelling, starring emblematic heroes from the past such as Edgeworth and Pearson, then depict three of the most used flexible families of distributions, and finally provide an outlook on future flexible modelling research by posing challenging open questions.Comment: 27 pages, 4 figure

    Automatic Differentiation Variational Inference

    Full text link
    Probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck in this process. Deriving algorithms for new models can be both mathematically and computationally challenging, which makes it difficult to efficiently cycle through the steps. To this end, we develop automatic differentiation variational inference (ADVI). Using our method, the scientist only provides a probabilistic model and a dataset, nothing else. ADVI automatically derives an efficient variational inference algorithm, freeing the scientist to refine and explore many models. ADVI supports a broad class of models-no conjugacy assumptions are required. We study ADVI across ten different models and apply it to a dataset with millions of observations. ADVI is integrated into Stan, a probabilistic programming system; it is available for immediate use
    corecore