103 research outputs found

    An Oversampled Filter Bank Multicarrier System for cognitive Radio

    Get PDF

    TVWS filter bank transceiver on OMAP-L137 evaluation module

    Get PDF
    Communications devices operating in the TV white space (TVWS) spectrum will be strictly regulated, requiring compliance with spectral masks to protect incumbent users and sufficient frequency agility to allow access to numerous frequency bands at different times and locations. Therefore, future designs operating at radio frequency (RF) have been proposed. The purpose of this paper is to demonstrate an implementation of such a transceivers at a scale-down frequency implemented on the OMAP--L137 evaluation module, whereby the RF link can be replaced by the device's audio I/O, thus enabling easier observation and algorithm testing for students

    Efficient TV white space filter bank transceiver

    Get PDF
    Future devices operating in the TV white space (TVWS) spectrum will require to access different bands at different locations and times in order to avoid interference to incumbent users, requiring agility and sufficient spectral masks to satisfy regulators. Further, with very high-speed ADCs and DACs becoming reality, the purpose of this paper is to present a transceiver front-end capable of simultaneously up- and downconverting a significant portion of the UHF band. The proposed approach takes a two-stage filter-bank conversion for implementation on state-of-the-art FPGAs. We present three different parameterisations, which are compatible with the 40 TVWS channels between 470 and 790MHz in Europe, and compare them in terms of complexity and latency

    Filter Bank Multicarrier Modulation for Spectrally Agile Waveform Design

    Get PDF
    In recent years the demand for spectrum has been steadily growing. With the limited amount of spectrum available, Spectrum Pooling has gained immense popularity. As a result of various studies, it has been established that most of the licensed spectrum remains underutilized. Spectrum Pooling or spectrum sharing concentrates on making the most of these whitespaces in the licensed spectrum. These unused parts of the spectrum are usually available in chunks. A secondary user looking to utilize these chunks needs a device capable of transmitting over distributed frequencies, while not interfering with the primary user. Such a process is known as Dynamic Spectrum Access (DSA) and a device capable of it is known as Cognitive Radio. In such a scenario, multicarrier communication that transmits data across the channel in several frequency subcarriers at a lower data rate has gained prominence. Its appeal lies in the fact that it combats frequency selective fading. Two methods for implementing multicarrier modulation are non-contiguous orthogonal frequency division multiplexing (NCOFDM)and filter bank multicarrier modulation (FBMC). This thesis aims to implement a novel FBMC transmitter using software defined radio (SDR) with modulated filters based on a lowpass prototype. FBMCs employ two sets of bandpass filters called analysis and synthesis filters, one at the transmitter and the other at the receiver, in order to filter the collection of subcarriers being transmitted simultaneously in parallel frequencies. The novel aspect of this research is that a wireless transmitter based on non-contiguous FBMC is being used to design spectrally agile waveforms for dynamic spectrum access as opposed to the more popular NC-OFDM. Better spectral containment and bandwidth efficiency, combined with lack of cyclic prefix processing, makes it a viable alternative for NC-OFDM. The main aim of this thesis is to prove that FBMC can be practically implemented for wireless communications. The practicality of the method is tested by transmitting the FBMC signals real time by using the Simulink environment and USRP2 hardware modules

    Wideband TV white space transceiver design and implementation

    Get PDF
    For transceivers operating in television white space (TVWS), frequency agility and strict spectral mask fulfilments are vital. In the UK, TVWS covers a 320 MHz wide frequency band in the UHF range, and the aim of this paper is to present a wideband digital up- and down converter for this scenario. Sampling at radio frequency (RF), a two stage digital conversion is presented, which consists of a polyphase filter for implicit upsampling and decimation, and a filter bank-based multicarrier approach to resolve the 8MHz channels within the TVWS band. We demonstrate that the up- and down-conversion of 40 such channels is hardly more costly than that of a single channel. Appropriate filter design can satisfy the mandated spectral mask and control the reconstruction error. An FPGA implementation is discussed, capable of running the wideband transceiver on a single Virtex-7 device with sufficient word length to preserve the spectral mask requirements of the system

    PLC for the smart grid: state-of-the-art and challenges

    Get PDF
    This paper aims to review systems and applications for power line communications (PLC) in the context of the smart grid. We discuss the main applications and summarise state-of-the-art PLC systems and standards. We report efforts and challenges in channel and noise modelling, as well as in state-of-the-art transmission technology approaches

    Partially reconfigurable TVWS transceiver for use in UK and US markets

    Get PDF
    With more and more countries opening up sections of unlicensed spectrum for use by TV White Space (TVWS) devices, the prospect of building a device capable of operating in more than one world region is appealing. The difficulty is that the locations of TVWS bands within the radio spectrum are not globally harmonised. With this problem in mind, the purpose of this paper is to present a TVWS transceiver design which is capable of being reconfigured to operate in both the UK and US spectrum. We present three different configurations: one covering the UK TVWS spectrum and the remaining two covering the various locations of the US TVWS bands
    corecore