1,217 research outputs found

    A STUDY OF QUEUING THEORY IN LOW TO HIGH REWORK ENVIRONMENTS WITH PROCESS AVAILABILITY

    Get PDF
    In manufacturing systems subject to machine and operator resource constraints the effects of rework can be profound. High levels of rework burden the resources unnecessarily and as the utilization of these resources increases the expected queuing time of work in process increases exponentially. Queuing models can help managers to understand and control the effects of rework, but often this tool is overlooked in part because of concerns over accuracy in complex environments and/or the need for limiting assumptions. One aim of this work is to increase understanding of system variables on the accuracy of simple queuing models. A queuing model is proposed that combines G/G/1 modeling techniques for rework with effective processing time techniques for machine availability and the accuracy of this model is tested under varying levels of rework, external arrival variability, and machine availability. Results show that the model performs best under exponential arrival patterns and can perform well even under high rework conditions. Generalizations are made with regards to the use of this tool for allocation of jobs to specific workers and/or machines based on known rework rates with the ultimate aim of queue time minimization

    Modeling the semiconductor industry dynamics

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2008.Includes bibliographical references (p. 89-92).The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage supply chain planning and investment in technology transitions. Better understanding the essence of the industry dynamics will help firms win competitive advantages in this turbulent market. In this thesis, we will study semiconductor industry dynamics from three different angles: quantitative modeling, industry dynamics simulation, and strategic analysis. First, we develop a stochastic linear optimization model to address the supplier's "order fulfillment dilemma" suggested by previous empirical studies. The model provides optimal equipment production decisions that minimize the total cost under stochastic demand. To solve the large scale problem, we introduce the Bender's Decomposition, which is proven to outperform the pure Simplex method. Furthermore, we extend the basic model to multiple periods, allowing equipment inventory planning over a period of time. Second, we build a macro-level industry dynamic model using the methodology of System Dynamics. The model includes components of electronics demand projection, fabrication capacity allocation, fabrication cost structure, technology roadmapping as well as equipment production and R&D. The model generates projections of demand , industry productivity, schedule of building new fabrication, adoption of the latest process technology, etc., which are validated by actual industry data. In addition, we devise a control panel in the software that enables the users to implement flexible scenario and sensitivity analysis. Third, we propose a strategic framework for companies to pinpoint the root causes of the supply-demand mismatch problem.(cont.) This framework considers long lead times, fast clockspeeds, Moore's Law, and risky product and technology, which transitions contribute to the pronounced volatility amplification occurring in the semiconductor industry. This framework, along with several industry successful practices, will assist companies to mitigate the demand volatility and improve their supply chain performance.by Kailiang Wu.S.M

    A study of machine vision systems :

    Get PDF

    Index to 1984 NASA Tech Briefs, volume 9, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1984 Tech B Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    The 17th Project Integration Meeting

    Get PDF
    Progress made by the Low-Cost Solar Array Project during the period September 1980 to February 1981 is described. Included are reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. A report on and copies of visual presentations made at the Project Integration Meeting held at Pasadena, California on February 4 and 5, 1981 are also included

    Summary of flat-plate solar array project documentation. Abstracts of published documents, 1975 to June 1982

    Get PDF
    Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume
    • …
    corecore