2,425 research outputs found

    Evaluating the predicted reliability of mechatronic systems: state of the art

    Get PDF
    Reliability analysis of mechatronic systems is a recent field and a dynamic branch of research. It is addressed whenever there is a need for reliable, available, and safe systems. The studies of reliability must be conducted earlier during the design phase, in order to reduce costs and the number of prototypes required in the validation of the system. The process of reliability is then deployed throughout the full cycle of development. This process is broken down into three major phases: the predictive reliability, the experimental reliability and operational reliability. The main objective of this article is a kind of portrayal of the various studies enabling a noteworthy mastery of the predictive reliability. The weak points are highlighted. Presenting an overview of all the quantitative and qualitative approaches concerned with modelling and evaluating the prediction of reliability is so important for future reliability studies and for academic research to come up with new methods and tools. The mechatronic system is a hybrid system, it is dynamic, reconfigurable, and interactive. The modeling carried out of reliability prediction must take into account these criteria. Several methodologies have been developed in this track of research. In this regard, the aforementioned methodologies will be analytically sketched in this paper.Comment: 13 page, Mechanical Engineering: An International Journal (MEIJ), Vol. 3, No. 2, May 201

    EVALUATING THE PREDICTED RELIABILITY OF MECHATRONIC SYSTEMS: STATE OF THE ART

    Get PDF
    Reliability analysis of mechatronic systems is one of the most young field and dynamic branches of research. It is addressed whenever we want reliable, available, and safe systems. The studies of reliability must be conducted earlier during the design phase, in order to reduce costs and the number of prototypes required in the validation of the system. The process of reliability is then deployed throughout the full cycle of development; this process is broken down into three major phases: the predictive reliability, the experimental reliability and operational reliability. The main objective of this article is a kind of portrayal of the various studies enabling a noteworthy mastery of the predictive reliability. The weak points are highlighted, in addition presenting an overview of all approaches existing in quantitative and qualitative modeling and evaluating the reliability prediction is so important for the futures reliability studies, and for academic researches to innovate other new methods and tools. the Mechatronic system is a hybrid system; it is dynamic, reconfigurable, and interactive. The modeling carried out of reliability prediction must take into account these criteria. Several methodologies have been developed in this track of research. In this article, we will try to handle them from a critical angle

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    Production Engineering and Management

    Get PDF
    The annual International Conference on Production Engineering and Management takes place for the sixth time his year, and can therefore be considered a well - established event that is the result of the joint effort of the OWL University of Applied Sciences and the University of Trieste. The conference has been established as an annual meeting under the Double Degree Master Program ‘Production Engineering and Management’ by the two partner universities. The main goal of the conference is to provide an opportunity for students, researchers and professionals from Germany, Italy and abroad, to meet and exchange information, discuss experiences, specific practices and technical solutions used in planning, design and management of production and service systems. In addition, the conference is a platform aimed at presenting research projects, introducing young academics to the tradition of Symposiums and promoting the exchange of ideas between the industry and the academy. Especially the contributions of successful graduates of the Double Degree Master Program ‘Production Engineering and Management’ and those of other postgraduate researchers from several European countries have been enforced. This year’s special focus is on Direct Digital Manufacturing in the context of Industry 4.0, a topic of great interest for the global industry. The concept is spreading, but the actual solutions must be presented in order to highlight the practical benefits to industry and customers. Indeed, as Henning Banthien, Secretary General of the German ‘Plattform Industrie 4.0’ project office, has recently remarked, “Industry 4.0 requires a close alliance amongst the private sector, academia, politics and trade unions” in order to be “translated into practice and be implemented now”. PEM 2016 takes place between September 29 and 30, 2016 at the OWL University of Applied Sciences in Lemgo. The program is defined by the Organizing and Scientific Committees and clustered into scientific sessions covering topics of main interest and importance to the participants of the conference. The scientific sessions deal with technical and engineering issues, as well as management topics, and include contributions by researchers from academia and industry. The extended abstracts and full papers of the contributions underwent a double - blind review process. The 24 accepted presentations are assigned, according to their subject, to one of the following sessions: ‘Direct Digital Manufacturing in the Context of Industry 4.0’, ‘Industrial Engineering and Lean Management’, ‘Management Techniques and Methodologies’, ‘Wood Processing Technologies and Furniture Production’ and ‘Innovation Techniques and Methodologies

    Emerging Trends in Mechatronics

    Get PDF
    Mechatronics is a multidisciplinary branch of engineering combining mechanical, electrical and electronics, control and automation, and computer engineering fields. The main research task of mechatronics is design, control, and optimization of advanced devices, products, and hybrid systems utilizing the concepts found in all these fields. The purpose of this special issue is to help better understand how mechatronics will impact on the practice and research of developing advanced techniques to model, control, and optimize complex systems. The special issue presents recent advances in mechatronics and related technologies. The selected topics give an overview of the state of the art and present new research results and prospects for the future development of the interdisciplinary field of mechatronic systems

    A Proposed Approach to Mechatronics Design and Implementation Education-Oriented Methodology

    Get PDF
    Mechatronics engineer is expected to design engineering systems with synergy and integration toward constrains like higher performance, speed, precision, efficiency, lower costs and functionality. The key element in success of a mechatronics engineering education-program, and correspondingly, Mechatronics engineering graduates, is directly related to a well-structured mechatronic system design course and the applied structural design methodology. Guidelines for structural design methodology and tools for the development process of mechatronic products, that can be applied in educational process is highly required. This paper proposes mechatronics systems design education-oriented methodology, which aims to integrate multidisciplinary knowledge, in various stages through the design process and development of mechatronics product. The proposed mechatronics design methodology is described, discussed and applied with the help of example student final year graduation project; design and implementation of mechatronics mobile robotic guidance system in the from of smart wheelchair- Mechatronics Motawif, to help and support people with disabilities and special needs to perform specific predetermined tasks, particularly, performing Al Omrah and motion around holy Kaba, Makka. Keywords: Mechatronics, Design methodology, Parallel design, Synergistic integration, Modeling/ Simulation, Prototyping, Mobile robot, Motawif

    Using a Total Quality Strategy in a new Practical Approach for Improving the Product Reliability in Automotive Industry

    Get PDF
    In this paper a Total Quality Management strategy is proposed, refined and used with the aim at improving the quality of large-mass industrial products far beyond the technical specifications demanded at the end-customer level. This approach combines standard and non-standard tools used for Reliability, Availability and Maintainability analysis. The procedure also realizes a stricter correlation between theoretical evaluation methods and experimental evidences as part of a modern integrated method for strengthening quality in design and process. A commercial Intake Manifold, largely spread in the market, is used as test-case for the validation of the methodology. As general additional result, the research underlines the impact of Total Quality Management and its tools on the development of innovation

    Robust product architecture development combining matrix-based approaches and function-based failure propagation method: M-FBFP framework

    Get PDF
    Ovaj rad predlaže okruženje M-FBFP sa ciljem da se pomogne konstruktorima prilikom rešavanja problema sa rizikom, koji se pojavljuje u arhitekturi proizvoda, te sa efektima pri radu u neizvesnim radnim uslovima. Predloženo okruženje predstavlja kombinaciju matrično baziranih pristupa (QFD i MDM) i FBFP metode. QFD pristup je integrisani skup alata za prikupljanje zahteva korisnika, inženjerskih karakteristika, koje zadovoljavaju te zahteve, te ostalih veza između inženjerskih karakteristika, dok se MDM pristup primenjuje za modeliranje struktura i zavisnosti između domena, te unutar samih njih. FBFP metoda se primenjuje na funkcionalnom nivou, te nam daje potencijalnu informaciju o nedostatku ili grešci u samim funkcijama proizvoda i njegovim podsistemima tokom faze projektovanja. Kao rezultat ovog okruženja, moguće je sprovesti analizu rizika u podsistemima proizvoda i samim tim dobiti povratnu informaciju, da li je nešto u predloženoj arhitekturi potrebno dodati ili promeniti. U okviru ovog rada prikazan je primer klima-komore sa regeneracijom toplote, čime je prikazan princip rada predloženog okruženja.This paper proposes an M-FBFP framework with the objective to help designers tackle the problem of risk emerging from product architecture and the effects of uncertain operating conditions. The proposed framework combines matrix approaches (QFD and MDM) and the FBFP method. The QFD is an integrated set of tools for recording user requirements, engineering characteristics that satisfy these requirements, and any tradeoffs that might be necessary between the engineering characteristics, while the MDM is applied to model structural arrangements and dependencies between the domains and within themselves. The FBFP method, on the other hand, is applied at the functional level, provides potential failure information based on product functions during conceptual design in product subsystems. As a result of the proposed framework, risk analysis of subsystems becomes possible and feedback on product architecture could be provided. To test validity of the proposed approach, here is presented a case study with climate chamber with heat regeneration
    corecore