29,009 research outputs found

    The consistency of empirical comparisons of regression and analogy-based software project cost prediction

    Get PDF
    OBJECTIVE - to determine the consistency within and between results in empirical studies of software engineering cost estimation. We focus on regression and analogy techniques as these are commonly used. METHOD – we conducted an exhaustive search using predefined inclusion and exclusion criteria and identified 67 journal papers and 104 conference papers. From this sample we identified 11 journal papers and 9 conference papers that used both methods. RESULTS – our analysis found that about 25% of studies were internally inconclusive. We also found that there is approximately equal evidence in favour of, and against analogy-based methods. CONCLUSIONS – we confirm the lack of consistency in the findings and argue that this inconsistent pattern from 20 different studies comparing regression and analogy is somewhat disturbing. It suggests that we need to ask more detailed questions than just: “What is the best prediction system?

    Deriving Models for Software Project Effort Estimation By Means of Genetic Programming

    Get PDF
    Software engineering, effort estimation, genetic programming, symbolic regression. This paper presents the application of a computational intelligence methodology in effort estimation for software projects. Namely, we apply a genetic programming model for symbolic regression; aiming to produce mathematical expressions that (1) are highly accurate and (2) can be used for estimating the development effort by revealing relationships between the project’s features and the required work. We selected to investigate the effectiveness of this methodology into two software engineering domains. The system was proved able to generate models in the form of handy mathematical expressions that are more accurate than those found in literature.

    Comparing software prediction techniques using simulation

    Get PDF
    The need for accurate software prediction systems increases as software becomes much larger and more complex. We believe that the underlying characteristics: size, number of features, type of distribution, etc., of the data set influence the choice of the prediction system to be used. For this reason, we would like to control the characteristics of such data sets in order to systematically explore the relationship between accuracy, choice of prediction system, and data set characteristic. It would also be useful to have a large validation data set. Our solution is to simulate data allowing both control and the possibility of large (1000) validation cases. The authors compare four prediction techniques: regression, rule induction, nearest neighbor (a form of case-based reasoning), and neural nets. The results suggest that there are significant differences depending upon the characteristics of the data set. Consequently, researchers should consider prediction context when evaluating competing prediction systems. We observed that the more "messy" the data and the more complex the relationship with the dependent variable, the more variability in the results. In the more complex cases, we observed significantly different results depending upon the particular training set that has been sampled from the underlying data set. However, our most important result is that it is more fruitful to ask which is the best prediction system in a particular context rather than which is the "best" prediction system

    Search Heuristics, Case-Based Reasoning and Software Project Effort Prediction

    Get PDF
    This paper reports on the use of search techniques to help optimise a case-based reasoning (CBR) system for predicting software project effort. A major problem, common to ML techniques in general, has been dealing with large numbers of case features, some of which can hinder the prediction process. Unfortunately searching for the optimal feature subset is a combinatorial problem and therefore NP-hard. This paper examines the use of random searching, hill climbing and forward sequential selection (FSS) to tackle this problem. Results from examining a set of real software project data show that even random searching was better than using all available for features (average error 35.6% rather than 50.8%). Hill climbing and FSS both produced results substantially better than the random search (15.3 and 13.1% respectively), but FSS was more computationally efficient. Providing a description of the fitness landscape of a problem along with search results is a step towards the classification of search problems and their assignment to optimum search techniques. This paper attempts to describe the fitness landscape of this problem by combining the results from random searches and hill climbing, as well as using multi-dimensional scaling to aid visualisation. Amongst other findings, the visualisation results suggest that some form of heuristic-based initialisation might prove useful for this problem

    Reliability and validity in comparative studies of software prediction models

    Get PDF
    Empirical studies on software prediction models do not converge with respect to the question "which prediction model is best?" The reason for this lack of convergence is poorly understood. In this simulation study, we have examined a frequently used research procedure comprising three main ingredients: a single data sample, an accuracy indicator, and cross validation. Typically, these empirical studies compare a machine learning model with a regression model. In our study, we use simulation and compare a machine learning and a regression model. The results suggest that it is the research procedure itself that is unreliable. This lack of reliability may strongly contribute to the lack of convergence. Our findings thus cast some doubt on the conclusions of any study of competing software prediction models that used this research procedure as a basis of model comparison. Thus, we need to develop more reliable research procedures before we can have confidence in the conclusions of comparative studies of software prediction models

    Software project economics: A roadmap

    Get PDF
    The objective of this paper is to consider research progress in the field of software project economics with a view to identifying important challenges and promising research directions. I argue that this is an important sub-discipline since this will underpin any cost-benefit analysis used to justify the resourcing, or otherwise, of a software project. To accomplish this I conducted a bibliometric analysis of peer reviewed research articles to identify major areas of activity. My results indicate that the primary goal of more accurate cost prediction systems remains largely unachieved. However, there are a number of new and promising avenues of research including: how we can combine results from primary studies, integration of multiple predictions and applying greater emphasis upon the human aspects of prediction tasks. I conclude that the field is likely to remain very challenging due to the people-centric nature of software engineering, since it is in essence a design task. Nevertheless the need for good economic models will grow rather than diminish as software becomes increasingly ubiquitous
    • 

    corecore