22 research outputs found

    An IVIF-ELECTRE outranking method for multiple criteria decision-making with interval-valued intuitionistic fuzzy sets

    Get PDF
    The method of ELimination Et Choix Traduisant la REalité (ELimination and Choice Expressing Reality, ELECTRE) is a well-known and widely used outranking method for handling decision-making problems. The purpose of this paper is to develop an interval-valued intuitionistic fuzzy ELECTRE (IVIF-ELECTRE) method and apply it to multiple criteria decision analysis (MCDA) involving the multiple criteria evaluation/selection of alternatives. Using interval-valued intuitionistic fuzzy (IVIF) sets with an inclusion comparison approach, concordance and discordance sets are identified for each pair of alternatives. Next, concordance and discordance indices are determined using an aggregate importance weight score function and a generalised distance measurement between weighted evaluative ratings, respectively. Based on the concordance and discordance dominance matrices, two IVIF-ELECTRE ranking procedures are developed for the partial and complete ranking of the alternatives. The feasibility and applicability of the proposed methods are illustrated with a multiple criteria decision-making problem of watershed site selection. A comparative analysis of other MCDA methods is conducted to demonstrate the advantages of the proposed IVIF-ELECTRE methods. Finally, an empirical study of job choices is implemented to validate the effectiveness of the current methods in the real world. First published online: 17 Sep 201

    Pilot3 D2.1 - Trade-off report on multi criteria decision making techniques

    Get PDF
    This deliverable describes the decision making approach that will be followed in Pilot3. It presents a domain-driven analysis of the characteristics of Pilot3 objective function and optimisation framework. This has been done considering inputs from deliverable D1.1 - Technical Resources and Problem definition, from interaction with the Topic Manager, but most importantly from a dedicated Advisory Board workshop and follow-up consultation. The Advisory Board is formed by relevant stakeholders including airlines, flight operation experts, pilots, and other relevant ATM experts. A review of the different multi-criteria decision making techniques available in the literature is presented. Considering the domain-driven characteristics of Pilot3 and inputs on how the tool could be used by airlines and crew. Then, the most suitable methods for multi-criteria optimisation are selected for each of the phases of the optimisation framework

    A latency-aware max-min algorithm for resource allocation in cloud

    Get PDF
    Cloud computing is an emerging distributed computing paradigm. However, it requires certain initiatives that need to be tailored for the cloud environment such as the provision of an on-the-fly mechanism for providing resource availability based on the rapidly changing demands of the customers. Although, resource allocation is an important problem and has been widely studied, there are certain criteria that need to be considered. These criteria include meeting user’s quality of service (QoS) requirements. High QoS can be guaranteed only if resources are allocated in an optimal manner. This paper proposes a latency-aware max-min algorithm (LAM) for allocation of resources in cloud infrastructures. The proposed algorithm was designed to address challenges associated with resource allocation such as variations in user demands and on-demand access to unlimited resources. It is capable of allocating resources in a cloud-based environment with the target of enhancing infrastructure-level performance and maximization of profits with the optimum allocation of resources. A priority value is also associated with each user, which is calculated by analytic hierarchy process (AHP). The results validate the superiority for LAM due to better performance in comparison to other state-of-the-art algorithms with flexibility in resource allocation for fluctuating resource demand patterns

    Eco-design decision making : towards sustainable engineering design of large made-to-order products

    Get PDF
    Sustainable design provides an holistic, life-cycle approach by which design engineers can minimise negative impacts and maximise positive impacts, thus ensuring that current industrial progress is not achieved at the expense of future generations. In the context of sustainable design, large made-to-order (LMTO) product sectors must address some unique issues: " The design process may be in the order of years, involving the client, the design contractors, co-venturers, suppliers and regulators. 9 The one-off nature of the design may limit the opportunity for reuse of design knowledge. 11 The existenceo f the possibility of catastrophico ut-of-envelopee ventsl eading to large scale safety and environmental impacts. " There is potential for high energy and resource consumption. " . Some LMTO products may cause local and transboundary environmental impacts. 0 There may be long term, post-decommissioning impacts. 0 Some aspects of the product life-cycle may give rise to impacts on social welfare. Engineering design is a process of decision making both during option synthesis and option selection. The first part of this research examined the current integration of environmental objectives and attributes with industrial design decision making processes using qualitative research methods. In particular, design selection was considered as the case-study focused on the activities of two case-study design contractors. The second part of the research proposed a framework to assist the consideration of environmental and societal impacts using transparent, systematic methodologies based on Multiple Attribute Decision Making (MADM) approaches. Two MADM methods were compared in relation to a case-study regarding the selection of an option for a produced water treatment system; Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Concordance and Discordance Analyses by Similarity to Ideal Solution (CODASID). Due to the subjectivity and uncertainty associated with information relating to sustainable design, a fuzzy set-based methodology was also investigated. In order to simulate the intuitive processes of human decision makers, the application of linguistic terms to evaluate sustainable design attributes was explored. This method was applied to a group decision making case-study to determine the best option for replacing a heat exchanger situated in a pond water cooling system. Comparisons were made between the fuzzy MADM method and the decision obtained from a group-based discussion. Finally, the third part of the research specifically addressed perceived risk attributed by the public to proposed large made-to-order products or processes, accommodating the societal element of sustainable design. Public risk perception was decomposed into measurable indices which were suitable for application to the fuzzy MADM method. The final aggregated evaluation, representing the overall perceived risk associated with the product in question, was then examined under different tolerance scenarios in order to make an informed judgement with respect to product viability. These three core research elements provide the foundation for managing the environmental and societal aspects of sustainable engineering design of large made-toorder products, thus providing an important addition to the wider concept of integrated product design.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Full Issue

    Get PDF

    Developing collaborative planning support tools for optimised farming in Western Australia

    Get PDF
    Land-use (farm) planning is a highly complex and dynamic process. A land-use plan can be optimal at one point in time, but its currency can change quickly due to the dynamic nature of the variables driving the land-use decision-making process. These include external drivers such as weather and produce markets, that also interact with the biophysical interactions and management activities of crop production.The active environment of an annual farm planning process can be envisioned as being cone-like. At the beginning of the sowing year, the number of options open to the manager is huge, although uncertainty is high due to the inability to foresee future weather and market conditions. As the production year reveals itself, the uncertainties around weather and markets become more certain, as does the impact of weather and management activities on future production levels. This restricts the number of alternative management options available to the farm manager. Moreover, every decision made, such as crop type sown in a paddock, will constrains the range of management activities possible in that paddock for the rest of the growing season.This research has developed a prototype Land-use Decision Support System (LUDSS) to aid farm managers in their tactical farm management decision making. The prototype applies an innovative approach that mimics the way in which a farm manager and/or consultant would search for optimal solutions at a whole-farm level. This model captured the range of possible management activities available to the manager and the impact that both external (to the farm) and internal drivers have on crop production and the environment. It also captured the risk and uncertainty found in the decision space.The developed prototype is based on a Multiple Objective Decision-making (MODM) - á Posteriori approach incorporating an Exhaustive Search method. The objective set used for the model is: maximising profit and minimising environmental impact. Pareto optimisation theory was chosen as the method to select the optimal solution and a Monte Carlo simulator is integrated into the prototype to incorporate the dynamic nature of the farm decision making process. The prototype has a user-friendly front and back end to allow farmers to input data, drive the application and extract information easily

    Neutrosophic Triplet Structures. Volume I

    Get PDF

    Conflicting Objectives in Decisions

    Get PDF
    This book deals with quantitative approaches in making decisions when conflicting objectives are present. This problem is central to many applications of decision analysis, policy analysis, operational research, etc. in a wide range of fields, for example, business, economics, engineering, psychology, and planning. The book surveys different approaches to the same problem area and each approach is discussed in considerable detail so that the coverage of the book is both broad and deep. The problem of conflicting objectives is of paramount importance, both in planned and market economies, and this book represents a cross-cultural mixture of approaches from many countries to the same class of problem

    Security Enhanced Applications for Information Systems

    Get PDF
    Every day, more users access services and electronically transmit information which is usually disseminated over insecure networks and processed by websites and databases, which lack proper security protection mechanisms and tools. This may have an impact on both the users’ trust as well as the reputation of the system’s stakeholders. Designing and implementing security enhanced systems is of vital importance. Therefore, this book aims to present a number of innovative security enhanced applications. It is titled “Security Enhanced Applications for Information Systems” and includes 11 chapters. This book is a quality guide for teaching purposes as well as for young researchers since it presents leading innovative contributions on security enhanced applications on various Information Systems. It involves cases based on the standalone, network and Cloud environments

    An intelligent network selection mechanism for vertical handover decision in vehicular Ad Hoc wireless networks

    Get PDF
    The design of the Vehicular Ad-hoc Network (VANET) technology is a modern paradigm for vehicular communication on movement. However, VANET's vertical handover (VHO) decision in seamless connectivity is a huge challenge caused by the network topology complexity and the large number of mobile nodes that affect the network traffic in terms of the data transmission and dissemination efficiency. Furthermore, the conventional scheme only uses a received signal strength as a metric value, which shows a lack of appropriate handover metrics that is more suitable in horizontal handover compared to VHO. Appropriate VHO decisions will result in an increase in the network quality of service (QoS) in terms of delay, latency, and packet loss. This study aims to design an intelligent network selection to minimize the handover delay and latency, and packet loss in the heterogeneous Vehicle-to- Infrastructure (V2I) wireless networks. The proposed intelligent network selection is known as the Adaptive Handover Decision (AHD) scheme that uses Fuzzy Logic (FL) and Simple Additive Weighting (SAW) algorithms, namely F-SAW scheme. The AHD scheme was designed to select the best-qualified access point (AP) and base station (BS) candidates without degrading the performance of ongoing applications. The F-SAW scheme is proposed to develop a handover triggering mechanism that generates multiple attributes parameters using the information context of vertical handover decision in the V2I heterogeneous wireless networks. This study uses a network simulator (NS-2) as the mobility traffic network and vehicular mobility traffic (VANETMobiSim) generator to implement a topology in a realistic VANET mobility scenario in Wi-Fi, WiMAX, and LTE networks technologies. The proposed AHD scheme shows an improvement in the QoS handover over the conventional (RSS-based) scheme with an average QoS increased of 21%, 20%, and 13% in delay, latency and packet loss, while Media Independent Handover based (MIH-based) scheme with 12.2%, 11%, and 7% respectively. The proposed scheme assists the mobile user in selecting the best available APs or BS during the vehicles’ movement without degrading the performance of ongoing applications
    corecore