693 research outputs found

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    FRIOD: a deeply integrated feature-rich interactive system for effective and efficient outlier detection

    Get PDF
    In this paper, we propose an novel interactive outlier detection system called feature-rich interactive outlier detection (FRIOD), which features a deep integration of human interaction to improve detection performance and greatly streamline the detection process. A user-friendly interactive mechanism is developed to allow easy and intuitive user interaction in all the major stages of the underlying outlier detection algorithm which includes dense cell selection, location-aware distance thresholding, and final top outlier validation. By doing so, we can mitigate the major difficulty of the competitive outlier detection methods in specifying the key parameter values, such as the density and distance thresholds. An innovative optimization approach is also proposed to optimize the grid-based space partitioning, which is a critical step of FRIOD. Such optimization fully considers the high-quality outliers it detects with the aid of human interaction. The experimental evaluation demonstrates that FRIOD can improve the quality of the detected outliers and make the detection process more intuitive, effective, and efficient

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure

    A Semi-Supervised Feature Engineering Method for Effective Outlier Detection in Mixed Attribute Data Sets

    Get PDF
    Outlier detection is one of the crucial tasks in data mining which can lead to the finding of valuable and meaningful information within the data. An outlier is a data point that is notably dissimilar from other data points in the data set. As such, the methods for outlier detection play an important role in identifying and removing the outliers, thereby increasing the performance and accuracy of the prediction systems. Outlier detection is used in many areas like financial fraud detection, disease prediction, and network intrusion detection. Traditional outlier detection methods are founded on the use of different distance measures to estimate the similarity between the points and are confined to data sets that are purely continuous or categorical. These methods, though effective, lack in elucidating the relationship between outliers and known clusters/classes in the data set. We refer to this relationship as the context for any reported outlier. Alternate outlier detection methods establish the context of a reported outlier using underlying contextual beliefs of the data. Contextual beliefs are the established relationships between the attributes of the data set. Various studies have been recently conducted where they explore the contextual beliefs to determine outlier behavior. However, these methods do not scale in the situations where the data points and their respective contexts are sparse. Thus, the outliers reported by these methods tend to lose meaning. Another limitation of these methods is that they assume all features are equally important and do not consider nor determine subspaces among the features for identifying the outliers. Furthermore, determining subspaces is computationally exacerbated, as the number of possible subspaces increases with increasing dimensionality. This makes searching through all the possible subspaces impractical. In this thesis, we propose a Hybrid Bayesian Network approach to capture the underlying contextual beliefs to detect meaningful outliers in mixed attribute data sets. Hybrid Bayesian Networks utilize their probability distributions to encode the information of the data and outliers are those points which violate this information. To deal with the sparse contexts, we use an angle-based similarity method which is then combined with the joint probability distributions of the Hybrid Bayesian Network in a robust manner. With regards to the subspace selection, we employ a feature engineering method that consists of two-stage feature selection using Maximal Information Coefficient and Markov blankets of Hybrid Bayesian Networks to select highly correlated feature subspaces. This proposed method was tested on a real world medical record data set. The results indicate that the algorithm was able to identify meaningful outliers successfully. Moreover, we compare the performance of our algorithm with the existing baseline outlier detection algorithms. We also present a detailed analysis of the reported outliers using our method and demonstrate its efficiency when handling data points with sparse contexts

    Using Ensemble Technique to Improve Multiclass Classification

    Get PDF
    Many real world applications inevitably contain datasets that have multiclass structure characterized by imbalance classes, redundant and irrelevant features that degrade performance of classifiers. Minority classes in the datasets are treated as outliers’ classes. The research aimed at establishing the role of ensemble technique in improving performance of multiclass classification. Multiclass datasets were transformed to binary and the datasets resampled using Synthetic minority oversampling technique (SMOTE) algorithm.  Relevant features of the datasets were selected by use of an ensemble filter method developed using Correlation, Information Gain, Gain-Ratio and ReliefF filter selection methods. Adaboost and Random subspace learning algorithms were combined using Voting methodology utilizing random forest as the base classifier. The classifiers were evaluated using 10 fold stratified cross validation. The model showed better performance in terms of outlier detection and classification prediction for multiclass problem. The model outperformed other well-known existing classification and outlier detection algorithms such as Naïve bayes, KNN, Bagging, JRipper, Decision trees, RandomTree and Random forest. The study findings established that ensemble technique, resampling datasets and decomposing multiclass results in an improved classification performance as well as enhanced detection of minority outlier (rare) classes. Keywords: Multiclass, Classification, Outliers, Ensemble, Learning Algorithm DOI: 10.7176/JIEA/9-5-04 Publication date: August 31st 201

    Context Selection on Attributed Graphs for Outlier and Community Detection

    Get PDF
    Today\u27s applications store large amounts of complex data that combine information of different types. Attributed graphs are an example for such a complex database where each object is characterized by its relationships to other objects and its individual properties. Specifically, each node in an attributed graph may be characterized by a large number of attributes. In this thesis, we present different approaches for mining such high dimensional attributed graphs
    corecore