5,808 research outputs found

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    A Spatio-Temporal Framework for Managing Archeological Data

    Get PDF
    Space and time are two important characteristics of data in many domains. This is particularly true in the archaeological context where informa- tion concerning the discovery location of objects allows one to derive important relations between findings of a specific survey or even of different surveys, and time aspects extend from the excavation time, to the dating of archaeological objects. In recent years, several attempts have been performed to develop a spatio-temporal information system tailored for archaeological data. The first aim of this paper is to propose a model, called Star, for repre- senting spatio-temporal data in archaeology. In particular, since in this domain dates are often subjective, estimated and imprecise, Star has to incorporate such vague representation by using fuzzy dates and fuzzy relationships among them. Moreover, besides to the topological relations, another kind of spatial relations is particularly useful in archeology: the stratigraphic ones. There- fore, this paper defines a set of rules for deriving temporal knowledge from the topological and stratigraphic relations existing between two findings. Finally, considering the process through which objects are usually manually dated by archeologists, some existing automatic reasoning techniques may be success- fully applied to guide such process. For this purpose, the last contribution regards the translation of archaeological temporal data into a Fuzzy Temporal Constraint Network for checking the overall data consistency and reducing the vagueness of some dates based on their relationships with other ones

    QUALITATIVE ANSWERING SURVEYS AND SOFT COMPUTING

    Get PDF
    In this work, we reflect on some questions about the measurement problem in economics and, especially, their relationship with the scientific method. Statistical sources frequently used by economists contain qualitative information obtained from verbal expressions of individuals by means of surveys, and we discuss the reasons why it would be more adequately analyzed with soft methods than with traditional ones. Some comments on the most commonly applied techniques in the analysis of these types of data with verbal answers are followed by our proposal to compute with words. In our view, an alternative use of the well known Income Evaluation Question seems especially suggestive for a computing with words approach, since it would facilitate an empirical estimation of the corresponding linguistic variable adjectives. A new treatment of the information contained in such surveys would avoid some questions incorporated in the so called Leyden approach that do not fit to the actual world.Computing with words, Leyden approach, qualitative answering surveys, fuzzy logic

    A Review of Classification Problems and Algorithms in Renewable Energy Applications

    Get PDF
    Classification problems and their corresponding solving approaches constitute one of the fields of machine learning. The application of classification schemes in Renewable Energy (RE) has gained significant attention in the last few years, contributing to the deployment, management and optimization of RE systems. The main objective of this paper is to review the most important classification algorithms applied to RE problems, including both classical and novel algorithms. The paper also provides a comprehensive literature review and discussion on different classification techniques in specific RE problems, including wind speed/power prediction, fault diagnosis in RE systems, power quality disturbance classification and other applications in alternative RE systems. In this way, the paper describes classification techniques and metrics applied to RE problems, thus being useful both for researchers dealing with this kind of problem and for practitioners of the field

    3rd Workshop in Symbolic Data Analysis: book of abstracts

    Get PDF
    This workshop is the third regular meeting of researchers interested in Symbolic Data Analysis. The main aim of the event is to favor the meeting of people and the exchange of ideas from different fields - Mathematics, Statistics, Computer Science, Engineering, Economics, among others - that contribute to Symbolic Data Analysis
    • 

    corecore