24,542 research outputs found

    BRST Analysis of the Supersymmetric Higher Spin Field Models

    Get PDF
    We develop the BRST approach for all massless integer and half-integer higher spins in 4D Minkowski space, using the two component spinor nota- tion and develop the Lagrangian formulation for supersymmetric higher spin models. It is shown that the problem of second class constraints disappears and the BRST procedure becomes much more simple than in tensorial nota- tion. Furthermore, we demonstrate that the BRST procedure automatically provides extra auxiliary components that belong in the set of supersymmetry auxiliary components. Finally, we demonstrate how supersymmetry transfo- rmations are realized in such an approach. As a result, we conclude that the BRST approach to higher spin supersymmetric theories allows to derive both the Lagrangian and the supersymmetry transformations. Although most part of the work is devoted to massless component supersymmetric models, we also discuss generalization for massive component supersymmetric models and for superfield models

    The resource theory of quantum reference frames: manipulations and monotones

    Full text link
    Every restriction on quantum operations defines a resource theory, determining how quantum states that cannot be prepared under the restriction may be manipulated and used to circumvent the restriction. A superselection rule is a restriction that arises through the lack of a classical reference frame and the states that circumvent it (the resource) are quantum reference frames. We consider the resource theories that arise from three types of superselection rule, associated respectively with lacking: (i) a phase reference, (ii) a frame for chirality, and (iii) a frame for spatial orientation. Focussing on pure unipartite quantum states (and in some cases restricting our attention even further to subsets of these), we explore single-copy and asymptotic manipulations. In particular, we identify the necessary and sufficient conditions for a deterministic transformation between two resource states to be possible and, when these conditions are not met, the maximum probability with which the transformation can be achieved. We also determine when a particular transformation can be achieved reversibly in the limit of arbitrarily many copies and find the maximum rate of conversion. A comparison of the three resource theories demonstrates that the extent to which resources can be interconverted decreases as the strength of the restriction increases. Along the way, we introduce several measures of frameness and prove that these are monotonically nonincreasing under various classes of operations that are permitted by the superselection rule.Comment: 37 pages, 4 figures, Published Versio

    Constrained BRST- BFV Lagrangian formulations for Higher Spin Fields in Minkowski Spaces

    Full text link
    BRST-BFV method for constrained Lagrangian formulations (LFs) for (ir)reducible half-integer HS Poincare group representations in Minkowski space is suggested. The procedure is derived by 2 ways: from the unconstrained BRST-BFV method for mixed-symmetry HS fermionic fields subject to an arbitrary Young tableaux with k rows (suggested in arXiv:1211.1273[hep-th]) by extracting the second-class constraints, O^α=(O^a,O^a+)\widehat{O}_\alpha=(\widehat{O}_a, \widehat{O}^+_a), from a total superalgebra of constraints, second, in self-consistent way by means of finding BRST-extended initial off-shell algebraic constraints, O^a\widehat{O}_a. In both cases, the latter constraints supercommute on the constraint surface with constrained BRST QCQ_C and spin operators σCi\sigma^i_C. The closedness of the superalgebra QC,O^a,σCiQ_C, \widehat{O}_a, \sigma^i_C guarantees that the final gauge-invariant LF is compatible with off-shell constraints O^a\widehat{O}_a imposed on field and gauge parameter vectors of Hilbert space not depending from the ghosts and conversion auxiliary oscillators related to O^a\widehat{O}_a, in comparison with vectors for unconstrained BRST-BFV LF. The suggested constrained BRST-BFV approach is valid for both massive HS fields and integer HS fields in the second-order formulation. It is shown that the respective constrained and unconstrained LFs for (half)-integer HS fields with a given spin are equivalent. The constrained Lagrangians in ghost-independent and component (for initial spin-tensor field) are obtained and shown to coincide with Fang-Fronsdal formulation for constrained totally-symmetric HS field. The triplet and unconstrained quartet LFs for the latter field and gauge-invariant constrained Lagrangians for a massive field of spin n+1/2 are derived. A concept of BRST-invariant second-class constraints for a general dynamical system with mixed-class constraints is suggested.Comment: 55 pages, typos corrected, published version; footnote 1 added, typo in (3.15) correcte

    The resource theory of informational nonequilibrium in thermodynamics

    Get PDF
    We review recent work on the foundations of thermodynamics in the light of quantum information theory. We adopt a resource-theoretic perspective, wherein thermodynamics is formulated as a theory of what agents can achieve under a particular restriction, namely, that the only state preparations and transformations that they can implement for free are those that are thermal at some fixed temperature. States that are out of thermal equilibrium are the resources. We consider the special case of this theory wherein all systems have trivial Hamiltonians (that is, all of their energy levels are degenerate). In this case, the only free operations are those that add noise to the system (or implement a reversible evolution) and the only nonequilibrium states are states of informational nonequilibrium, that is, states that deviate from the maximally mixed state. The degree of this deviation we call the state's nonuniformity; it is the resource of interest here, the fuel that is consumed, for instance, in an erasure operation. We consider the different types of state conversion: exact and approximate, single-shot and asymptotic, catalytic and noncatalytic. In each case, we present the necessary and sufficient conditions for the conversion to be possible for any pair of states, emphasizing a geometrical representation of the conditions in terms of Lorenz curves. We also review the problem of quantifying the nonuniformity of a state, in particular through the use of generalized entropies. Quantum state conversion problems in this resource theory can be shown to be always reducible to their classical counterparts, so that there are no inherently quantum-mechanical features arising in such problems. This body of work also demonstrates that the standard formulation of the second law of thermodynamics is inadequate as a criterion for deciding whether or not a given state transition is possible.Comment: 51 pages, 9 figures, Revised Versio
    • …
    corecore