102 research outputs found

    Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant

    Get PDF
    This paper presents an implant-based wireless pressure sensing paradigm for long-range continuous intraocular pressure (IOP) monitoring of glaucoma patients. An implantable parylene-based pressure sensor has been developed, featuring an electrical LC-tank resonant circuit for passive wireless sensing without power consumption on the implanted site. The sensor is microfabricated with the use of parylene C (poly-chlorop- xylylene) to create a flexible coil substrate that can be folded for smaller physical form factor so as to achieve minimally invasive implantation, while stretched back without damage for enhanced inductive sensorโ€“reader coil coupling so as to achieve strong sensing signal. A data-processed external readout method has also been developed to support pressure measurements. By incorporating the LC sensor and the readout method, wireless pressure sensing with 1-mmHg resolution in longer than 2-cm distance is successfully demonstrated. Other than extensive on-bench characterization, device testing through six-month chronic in vivo and acute ex vivo animal studies has verified the feasibility and efficacy of the sensor implant in the surgical aspect, including robust fixation and long-term biocompatibility in the intraocular environment. With meeting specifications of practical wireless pressure sensing and further reader development, this sensing methodology is promising for continuous, convenient, direct, and faithful IOP monitoring

    Wireless Transceivers for Implantable Microsystems.

    Full text link
    In this thesis, we present the first-ever fully integrated mm3 low-power biomedical transceiver with 1 meter of range that is powered by a mm2 thin-film battery. The transceiver is targeted for biomedical implants where size and energy constraints dictated by application make design challenging. Despite all the previous work in RFID tags, form factor of such radios is incompatible with mm3 biomedical implants. The proposed transceiver bridges this gap by providing a compact low-power solution that can run off small thin-film batteries and can be stacked with other system components in a 3D fashion. On the sensor-to-external side, we proposed a novel FSK architecture based on dual-resonator LC oscillators to mitigate unwanted overlap of two FSK tonesโ€™ phase noise spectrum. Due to inherent complexity of such systems, fourth order dual-resonator oscillators can exhibit instable operation. We mathematically modeled the instability and derive design conditions for stable oscillations. Through simulation and measurements, validity of derived models was confirmed. Together with other low-power system blocks, the transmitter was successfully implanted in live mouse and in-vivo measurements were performed to confirm successful transmission of vital signals through organic tissue. The integrated transmitter achieved a bit-error-rate of 10-6 at 10cm with 4.7nJ/bit energy consumption. On the external-to-sensor link, we proposed a new protocol to lower receiver peak power, which is highly limited due to small size of mm3 microsystem battery. In the proposed protocol, sending same data multiple times drastically relaxes jitter requirement on the sensor side at the cost of increased power consumption on the external side without increasing peak power radiated by the external unit. The receiver also uses a dual-coil LNA to improve range by 22% with only 11% area overhead. An asynchronous controller manages protocol timing and limits total monitoring current to 43nA. The fabricated receiver consumes 1.6nJ/bit at 40kbps while positioned 1m away from a 2W source.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102458/1/ghaed_1.pd

    An Implantable Microsystem for Autonomous Intraocular Pressure Monitoring .

    Full text link
    Glaucoma, a leading cause of blindness worldwide, is a disease in which the pressure within the eye is too high for the eye to tolerate and must be reduced in order to slow or prevent damage to the optic nerve. Conventional methods for monitoring eye pressure are normally only used in the physicianโ€™s office and rely on indirect measurement methods, leading to inaccuracies. Furthermore, intraocular pressure can vary throughout the day and also depends on activity. An autonomous implantable microsystem capable of monitoring intraocular pressure with minimal patient intervention would provide useful information to the clinician in the management of glaucoma. This dissertation studies the feasibility of an integrated microsystem for autonomously measuring intraocular pressure. Small size ensures minimal impact on the patient, preventing the device from entering the field of view and simplifying implantation. Integrated haptics aid surgical implantation and minimize trauma while allowing the implant to be removed if needed. A touch-mode capacitive pressure sensor, fabricated using the dissolved wafer process, transduces intraocular pressure into capacitance with a linear response and a sensitivity of 26 fF/mmHg. A new fabrication technique has been developed to embed vertical interconnects within a glass package containing the pressure sensor, a microbattery, readout circuitry, and an antenna. This enables the vertical stacking of these components and very efficient use of limited volume. The 1.5 mm x 2 mm x 0.5 mm transparent parylene-coated glass package enables solar cells to be placed on the circuit chip for power generation, trickle charging an on-board microbattery formed using standard cleanroom materials and a non-toxic electrolyte. Flooded-cell tests verified the electrochemistry and achieved a current capacity of 8 ยตAh/mm2. A simple integrated readout circuit consuming 35 pW in the idle mode implemented a finite-state machine and used an optical wakeup trigger to further reduce power. The microsystem has also been demonstrated with a microprocessor to autonomously gather and store data, reading it out on demand. Finally, a pulse-based ultrawideband wireless transmission technique is proposed using non-resonant antennas. The all-digital transmitter is expected to consume much less power than conventional encoded wireless transmitters and eliminates complex circuitry.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/89809/1/rhaque_1.pd

    Coupled resonator based wireless power transfer for bioelectronics

    Get PDF
    Implantable and wearable bioelectronics provide the ability to monitor and modulate physiological processes. They represent a promising set of technologies that can provide new treatment for patients or new tools for scientific discovery, such as in long-term studies involving small animals. As these technologies advance, two trends are clear, miniaturization and increased sophistication i.e. multiple channels, wireless bi-directional communication, and responsiveness (closed-loop devices). One primary challenge in realizing miniaturized and sophisticated bioelectronics is powering. Integration and development of wireless power transfer (WPT) technology, however, can overcome this challenge. In this dissertation, I propose the use of coupled resonator WPT for bioelectronics and present a new generalized analysis and optimization methodology, derived from complex microwave bandpass filter synthesis, for maximizing and controlling coupled resonator based WPT performance. This newly developed set of analysis and optimization methods enables system miniaturization while simultaneously achieving the necessary performance to safely power sophisticated bioelectronics. As an application example, a novel coil to coil based coupled resonator arrangement to wirelessly operate eight surface electromyography sensing devices wrapped circumferentially around an able-bodied arm is developed and demonstrated. In addition to standard coil to coil based systems, this dissertation also presents a new form of coupled resonator WPT system built of a large hollow metallic cavity resonator. By leveraging the analysis and optimization methods developed here, I present a new cavity resonator WPT system for long-term experiments involving small rodents for the first time. The cavity resonator based WPT arena exhibits a volume of 60.96 x 60.96 x 30.0 cm3. In comparison to prior state of the art, this cavity resonator system enables nearly continuous wireless operation of a miniature sophisticated device implanted in a freely behaving rodent within the largest space. Finally, I present preliminary work, providing the foundation for future studies, to demonstrate the feasibility of treating segments of the human body as a dielectric waveguide resonator. This creates another form of a coupled resonator system. Preliminary experiments demonstrated optimized coupled resonator wireless energy transfer into human tissue. The WPT performance achieved to an ultra-miniature sized receive coil (2 mm diameter) is presented. Indeed, optimized coupled resonator systems, broadened to include cavity resonator structures and human formed dielectric resonators, can enable the effective use of coupled resonator based WPT technology to power miniaturized and sophisticated bioelectronics

    Fully Integrated Biochip Platforms for Advanced Healthcare

    Get PDF
    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications

    Remote power delivery for hybrid integrated Bio-implantable Electrical Stimulation System

    Get PDF
    Bio-implantable devices such as heart pacers, gastric pacers and drug-delivery systems require power for carrying out their intended functions. These devices are usually powered through a battery implanted with the system or are wired to an external power source. In this work, a remote power delivery system (RPDS) is considered as a means to charge rechargeable batteries that power a Bio-implanted Electrical Stimulation System (BESS). A loosely coupled inductive power transmitter and receiver system has been designed to recharge batteries for a bio-implanted gastric pacer. The transmitter coil is periodically worn around the waist. The receiver coil, rechargeable batteries, battery-charging chip and the chip containing electrical stimulation circuitry form a bio-implanted hybrid integrated microsystem. The link efficiency between a transmitter coil and the implanted receiver coil when the diameters are markedly different is analyzed. A design methodology for RPDS is proposed based on the load and voltage required at the load. An analytical model is developed with the help of simple Matlab coding. A full wave rectifier with a voltage doubler circuit is used for the conversion of ac voltage to the required dc voltage. This dc voltage supplies power to a battery charging chip which is used to safely and appropriately charge a rechargeable Li-ion battery. For an input supply voltage of 17.67 V rms, operating frequency of 20 kHz and radial coplanar displacement between the coil axes of 7.5 inches, the maximum dc voltage and power obtained across a 65ฮฉ load resistor are 9.65 V and 1.33 W respectively. For a radial coplanar displacement between the coil axes of 6 inches, a 3.7 V nominal, 150 mAh polymer lithium ion battery has been successfully charged in 1 hour and 40 minutes from an initial voltage of 3.39 V to 4.12 V with an input voltage of 19.81 V rms at 20 kHz. An attempt has been made to model coil parasitics at high frequency. Variations in the load power as a function of frequency and radial coplanar displacement of the axes are examined. Design strategies to optimize power delivery with given geometric constraints are considered

    An update on retinal prostheses

    Get PDF
    Retinal prostheses are designed to restore a basic sense of sight to people with profound vision loss. They require a relatively intact posterior visual pathway (optic nerve, lateral geniculate nucleus and visual cortex). Retinal implants are options for people with severe stages of retinal degenerative disease such as retinitis pigmentosa and age-related macular degeneration. There have now been three regulatory-approved retinal prostheses. Over five hundred patients have been implanted globally over the past 15 years. Devices generally provide an improved ability to localize high-contrast objects, navigate, and perform basic orientation tasks. Adverse events have included conjunctival erosion, retinal detachment, loss of light perception, and the need for revision surgery, but are rare. There are also specific device risks, including overstimulation (which could cause damage to the retina) or delamination of implanted components, but these are very unlikely. Current challenges include how to improve visual acuity, enlarge the field-of-view, and reduce a complex visual scene to its most salient components through image processing. This review encompasses the work of over 40 individual research groups who have built devices, developed stimulation strategies, or investigated the basic physiology underpinning retinal prostheses. Current technologies are summarized, along with future challenges that face the field

    ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€,2020. 2. ๊น€์„ฑ์ค€.A visual prosthetic system typically consists of a neural stimulator, which is a surgically implantable device for electrical stimulation intended to restore the partial vision of blind patients, and peripheral external devices including an image sensor, a controller, and a processor. Although several visual prosthetic systems, such as retinal prostheses or retinal implants, have already been commercialized, there are still many issues on them (e.g., substrate materials for implantable units, electrode configurations, the use of external hardware, power supply and data transmission methods, design and fabrication approaches, etc.) to be dealt with for an improved visual prosthetic system. In this dissertation, a totally implantable visual prosthetic system is suggested with four motivations, which are thought to be important, as in the following: 1) simple fabrication of implantable parts, such as micro-sized electrodes and a case, for a neural stimulator based on polymer without semiconductor techniques, 2) multi-polar stimulation for virtual channel generation to overcome a limited number of physical electrodes in a confined space, 3) a new image acquisition strategy using an implantable camera, and 4) power supply as well as data transmission to a neural stimulator without hindering patients various activities. First, polymer materials have been widely used to develop various implantable devices for visual prosthetic systems because of their outstanding advantages including flexibility and applicability to microfabrication, compared with metal, silicon, or ceramic. Most polymer-based implantable devices have been fabricated by the semiconductor technology based on metal deposition and photolithography. This technology provides high accuracy and precision for metal patterning on a polymer substrate. However, the technology is also complicated and time-consuming as it requires masks for photolithography and vacuum for metal deposition as well as huge fabrication facilities. This is the reason why biocompatible cyclic olefin polymer (COP) with low water absorption (<0.01 %) and high light transmission (92 %) was chosen as a new substrate material of an implantable device in this study. Based on COP, simple fabrication process of an implantable device was developed without masks, vacuum, and huge fabrication facilities. COP is characterized by strong adhesion to gold and high ultraviolet (UV) transparency as well. Because of such adhesion and UV transparency, a gold thin film can be thermally laminated on a COP substrate with no adhesion layer and micromachined by a UV laser without damaging the substrate. Using the developed COP-based process, a depth-type microprobe was fabricated first, and its electrochemical and mechanical properties as well as functionality were evaluated by impedance measurements, buckling tests, and in vivo neural signal recording, respectively. Furthermore, the long-term reliability of COP encapsulation formed by the developed process was estimated through leakage current measurements during accelerated aging in saline solution, to show the feasibility of the encapsulation using COP as well. Second, even if stimulation electrodes become sufficiently small, it is demanding to arrange them for precise stimulation on individual neurons due to electrical crosstalk, which is the spatial superposition of electric fields generated by simultaneous stimuli. Hence, an adequate spacing between adjacent electrodes is required, and this causes a limited number of physical electrodes in a confined space such as in the brain or in the retina. To overcome this limitation, many researchers have proposed stimulation strategies using virtual channels, which are intermediate areas with large magnitudes of electric fields between physical electrodes. Such virtual channels can be created by multi-polar stimulation that can combine stimuli output from two or more electrodes at the same time. To produce more delicate stimulation patterns using virtual channels herein, penta-polar stimulation with a grid-shaped arrangement of electrodes was leveraged specially to generate them in two dimensions. This penta-polar stimulation was realized using a custom-designed integrated circuit with five different current sources and surface-type electrodes fabricated by the developed COP-based process. The effectiveness of the penta-polar stimulation was firstly evaluated by focusing electric fields in comparison to mono-polar stimulation. In addition, the distribution of electric fields changed by the penta-polar stimulation, which indicated virtual channel generation, was estimated in accordance with an amplitude ratio between stimuli of the two adjacent electrodes and a distance from them, through both finite element analysis and in vitro evaluation. Third, an implantable camera is herein proposed as a new image acquisition approach capturing real-time images while implanted in the eye, to construct a totally implantable visual prosthetic system. This implantable camera has distinct advantages in that it can provide blind patients with benefits to perform several ordinary activities, such as sleep, shower, or running, while focusing on objects in accordance with natural eye movements. These advantages are impossible to be achieved using a wearing unit such as a glasses-mounted camera used in a conventional partially implantable visual prosthetic system. Moreover, the implantable camera also has a merit of garnering a variety of image information using the complete structure of a camera, compared with a micro-photodiode array of a retinal implant. To fulfill these advantageous features, after having been coated with a biocompatible epoxy to prevent moisture penetration and sealed using a medical-grade silicone elastomer to gain biocompatibility as well as flexibility, the implantable camera was fabricated enough to be inserted into the eye. Its operation was assessed by wireless image acquisition that displayed a processed black and white image. In addition, to estimate reliable wireless communication ranges of the implantable camera in the body, signal-to-noise ratio measurements were conducted while it was covered by an 8-mm-thick biological medium that mimicked an in vivo environment. Lastly, external hardware attached on the body has been generally used in conventional visual prosthetic systems to stably deliver power and data to implanted units and to acquire image signals outside the body. However, there are common problems caused by this external hardware, including functional failure due to external damages, unavailability during sleep, in the shower, or while running or swimming, and cosmetic issues. Especially, an external coil for power and data transmission in a conventional visual prosthetic system is connected to a controller and processor through a wire, which makes the coil more vulnerable to the problems. To solve this issue, a totally implantable neural stimulation system controlled by a handheld remote controller is presented. This handheld remote controller can control a totally implantable stimulator powered by a rechargeable battery through low-power but relatively long-range ZigBee wireless communication. Moreover, two more functions can be performed by the handheld controller for expanded applications; one is percutaneous stimulation, and the other is inductive charging of the rechargeable battery. Additionally, simple switches on the handheld controller enable users to modulate parameters of stimuli like a gamepad. These handheld and user-friendly interfaces can make it easy to use the controller under various circumstances. The functionality of the controller was evaluated in vivo, through percutaneous stimulation and remote control especially for avian navigation, as well as in vitro. Results of both in vivo experiments were compared in order to verify the feasibility of remote control of neural stimulation using the controller. In conclusion, several discussions on results of this study, including the COP-based simple fabrication process, the penta-polar stimulation, the implantable camera, and the multi-functional handheld remote controller, are addressed. Based on these findings and discussions, how the researches in this thesis can be applied to the realization of a totally implantable visual prosthetic system is elucidated at the end of this dissertation.์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์‹ค๋ช… ํ™˜์ž๋“ค์˜ ๋ถ€๋ถ„ ์‹œ๋ ฅ์„ ์ „๊ธฐ ์ž๊ทน์œผ๋กœ ํšŒ๋ณต์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜์ˆ ์ ์œผ๋กœ ์ด์‹๋  ์ˆ˜ ์žˆ๋Š” ์žฅ์น˜์ธ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์™€ ์ด๋ฏธ์ง€ ์„ผ์„œ ๋˜๋Š” ์ปจํŠธ๋กค๋Ÿฌ, ํ”„๋กœ์„ธ์„œ๋ฅผ ํฌํ•จํ•˜๋Š” ์™ธ๋ถ€์˜ ์ฃผ๋ณ€ ์žฅ์น˜๋“ค๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ๋ง๋ง‰ ๋ณด์ฒ  ์žฅ์น˜ ๋˜๋Š” ๋ง๋ง‰ ์ž„ํ”Œ๋ž€ํŠธ์™€ ๊ฐ™์ด ๋ช‡๋ช‡ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์€ ์ด๋ฏธ ์ƒ์šฉํ™” ๋˜์—ˆ์ง€๋งŒ, ์—ฌ์ „ํžˆ ๋” ๋‚˜์€ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์œ„ํ•˜์—ฌ ๋‹ค๋ค„์ ธ์•ผ ํ•  ๋งŽ์€ ์ด์Šˆ๋“ค (์˜ˆ๋ฅผ ๋“ค์–ด, ์ด์‹ํ˜• ์žฅ์น˜์˜ ๊ธฐํŒ ๋ฌผ์งˆ, ์ „๊ทน์˜ ๋ฐฐ์—ด, ์™ธ๋ถ€ ํ•˜๋“œ์›จ์–ด์˜ ์‚ฌ์šฉ, ์ „๋ ฅ ๊ณต๊ธ‰ ๋ฐ ๋ฐ์ดํ„ฐ ์ „์†ก ๋ฐฉ๋ฒ•, ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ ๋ฐฉ์‹ ๋“ฑ)์ด ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๋ฉฐ, ์ด๋ฅผ ์œ„ํ•˜์—ฌ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ค‘์š”ํ•˜๋‹ค๊ณ  ์ƒ๊ฐ๋˜๋Š” ์ด ๋„ค ๊ฐ€์ง€์˜ ์ด์Šˆ๋“ค๊ณผ ๊ด€๋ จ๋œ ์—ฐ๊ตฌ ๋‚ด์šฉ์„ ๋‹ค๋ฃฌ๋‹ค. 1) ํด๋ฆฌ๋จธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์˜ ๋ฏธ์„ธ ์ „๊ทน ๋ฐ ํŒจํ‚ค์ง€์™€ ๊ฐ™์€ ์ด์‹ ๊ฐ€๋Šฅํ•œ ๋ถ€๋ถ„์„ ๋ฐ˜๋„์ฒด ๊ธฐ์ˆ  ์—†์ด ๊ฐ„๋‹จํ•˜๊ฒŒ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ 2) ์ œํ•œ๋œ ๊ณต๊ฐ„์—์„œ ์ „๊ทน ๊ฐœ์ˆ˜์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ€์ƒ ์ฑ„๋„์„ ํ˜•์„ฑํ•˜๋Š” ๋‹ค๊ทน์„ฑ ์ž๊ทน ๋ฐฉ์‹, 3) ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€ ํš๋“ ์ „๋žต, 4) ํ™˜์ž์˜ ๋‹ค์–‘ํ•œ ํ™œ๋™์„ ๋ฐฉํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ ์‹ ๊ฒฝ ์ž๊ทน๊ธฐ์— ์ „๋ ฅ์„ ๊ณต๊ธ‰ํ•˜๊ณ  ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†กํ•˜๋Š” ๋ฐฉ๋ฒ•. ์ฒซ์งธ๋กœ, ๊ธˆ์†์ด๋‚˜ ์‹ค๋ฆฌ์ฝ˜, ์„ธ๋ผ๋ฏน์— ๋น„ํ•˜์—ฌ ํด๋ฆฌ๋จธ๋Š” ์œ ์—ฐ์„ฑ ๋ฐ ๋ฏธ์„ธ ์ œ์ž‘์—์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํฌํ•จํ•˜๋Š” ๋‘๋“œ๋Ÿฌ์ง„ ์ด์ ๋“ค์ด ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋‹ค์–‘ํ•œ ์ด์‹ ๊ฐ€๋Šฅํ•œ ๋ถ€๋ถ„๋“ค์— ๋„๋ฆฌ ์ด์šฉ๋˜์—ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ํด๋ฆฌ๋จธ ๊ธฐ๋ฐ˜ ์ด์‹ํ˜• ์žฅ์น˜๋“ค์€ ๊ธˆ์† ์ฆ์ฐฉ๊ณผ ์‚ฌ์ง„ ์‹๊ฐ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋ฐ˜๋„์ฒด ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ๊ณต์ •์€ ํด๋ฆฌ๋จธ ๊ธฐํŒ ์œ„์— ๊ธˆ์†์„ ํŒจํ„ฐ๋‹ ํ•˜๋Š” ๋ฐ์— ์žˆ์–ด์„œ ๋†’์€ ์ •ํ™•์„ฑ๊ณผ ์ •๋ฐ€๋„๋ฅผ ์ œ๊ณตํ•œ๋‹ค. ํ•˜์ง€๋งŒ ๊ทธ ๊ณต์ •์€ ๋˜ํ•œ, ์‚ฌ์ง„ ์‹๊ฐ์— ์“ฐ์ด๋Š” ๋งˆ์Šคํฌ์™€ ๊ธˆ์† ์ฆ์ฐฉ์„ ์œ„ํ•œ ์ง„๊ณต๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์•„์ฃผ ํฐ ๊ณต์ • ์„ค๋น„๋ฅผ ์š”๊ตฌํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ์‹ฌํ•˜๊ณ  ๋ณต์žกํ•˜๋‹ค. ์ด๋Š” ๋ณธ ์—ฐ๊ตฌ์—์„œ ๋‚ฎ์€ ์ˆ˜๋ถ„ ํก์ˆ˜ (<0.01 %)์™€ ๋†’์€ ๋น› ํˆฌ๊ณผ (92 %)๋ฅผ ํŠน์ง•์œผ๋กœ ํ•˜๋Š” ์ƒ์ฒด์ ํ•ฉํ•œ ๊ณ ๋ฆฌํ˜• ์˜ฌ๋ ˆํ•€ ํด๋ฆฌ๋จธ (cyclic olefin polymer, COP)๊ฐ€ ์ด์‹ํ˜• ์žฅ์น˜๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๊ธฐํŒ ๋ฌผ์งˆ๋กœ์จ ์„ ํƒ๋œ ์ด์œ ์ด๋‹ค. COP๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜์—ฌ, ๋งˆ์Šคํฌ์™€ ์ง„๊ณต, ํฐ ๊ณต์ • ์„ค๋น„๊ฐ€ ํ•„์š” ์—†์ด ์ด์‹ ๊ฐ€๋Šฅํ•œ ์žฅ์น˜๋ฅผ ๊ฐ„๋‹จํ•˜๊ฒŒ ์ œ์ž‘ํ•˜๋Š” ๊ณต์ •์ด ๊ฐœ๋ฐœ๋˜์—ˆ๋‹ค. COP๋Š” ๊ธˆ๊ณผ์˜ ๊ฐ•ํ•œ ์ ‘ํ•ฉ๊ณผ ์ž์™ธ์„ ์— ๋Œ€ํ•œ ๋†’์€ ํˆฌ๋ช…์„ฑ์„ ๋˜ ๋‹ค๋ฅธ ํŠน์ง•์œผ๋กœ ํ•œ๋‹ค. ์ด์™€ ๊ฐ™์€ ์ ‘ํ•ฉ ํŠน์„ฑ๊ณผ ์ž์™ธ์„  ํˆฌ๋ช…์„ฑ ๋•๋ถ„์—, ๊ธˆ๋ฐ•์€ COP ๊ธฐํŒ์— ๋ณ„๋„์˜ ์ ‘ํ•ฉ์ธต ์—†์ด ์—ด๋กœ ์ ‘ํ•ฉ๋  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๊ทธ ๊ธฐํŒ์— ์†์ƒ์„ ์ฃผ์ง€ ์•Š์œผ๋ฉด์„œ ์ž์™ธ์„  ๋ ˆ์ด์ €๋ฅผ ํ†ตํ•˜์—ฌ ๋ฏธ์„ธํ•˜๊ฒŒ ๊ฐ€๊ณต๋  ์ˆ˜ ์žˆ๋‹ค. ๊ฐœ๋ฐœ๋œ COP ๊ธฐ๋ฐ˜์˜ ๊ณต์ •์„ ์ฒ˜์Œ์œผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์นจ์Šตํ˜• ๋ฏธ์„ธ ํ”„๋กœ๋ธŒ๊ฐ€ ์ œ์ž‘๋˜์—ˆ๊ณ , ๊ทธ ์ „๊ธฐํ™”ํ•™์ , ๊ธฐ๊ณ„์  ํŠน์„ฑ๊ณผ ๊ธฐ๋Šฅ์„ฑ์ด ๊ฐ๊ฐ ์ž„ํ”ผ๋˜์Šค ์ธก์ •๊ณผ ๋ฒ„ํด๋ง ํ…Œ์ŠคํŠธ, ์ƒ์ฒด ๋‚ด ์‹ ๊ฒฝ์‹ ํ˜ธ ๊ธฐ๋ก์œผ๋กœ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  COP๋ฅผ ์‚ฌ์šฉํ•œ ๋ฐ€๋ด‰์˜ ๊ฐ€๋Šฅ์„ฑ๋„ ์•Œ์•„๋ณด๊ธฐ ์œ„ํ•˜์—ฌ, ๊ฐœ๋ฐœ๋œ ๊ณต์ •์„ ์‚ฌ์šฉํ•˜์—ฌ ํ˜•์„ฑ๋œ COP ๋ฐ€๋ด‰์˜ ์žฅ๊ธฐ ์•ˆ์ •์„ฑ์ด ์ƒ๋ฆฌ์‹์—ผ์ˆ˜์—์„œ์˜ ๊ฐ€์† ๋…ธํ™” ์ค‘ ๋ˆ„์„ค ์ „๋ฅ˜ ์ธก์ •์„ ํ†ตํ•˜์—ฌ ์ถ”์ •๋˜์—ˆ๋‹ค. ๋‘˜์งธ๋กœ, ์ž๊ทน ์ „๊ทน์˜ ํฌ๊ธฐ๊ฐ€ ์ถฉ๋ถ„ํžˆ ์ž‘์•„์ง„๋‹ค๊ณ  ํ•˜๋”๋ผ๋„, ๋™์‹œ์— ์ถœ๋ ฅ๋˜๋Š” ์ž๊ทน์— ์˜ํ•ด ํ˜•์„ฑ๋˜๋Š” ์ „๊ธฐ์žฅ์˜ ์ค‘์ฒฉ์ธ ํฌ๋กœ์Šค ํ† ํฌ ๋•Œ๋ฌธ์— ๊ฐœ๊ฐœ์˜ ์‹ ๊ฒฝ์„ธํฌ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ์ž๊ทนํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ „๊ทน์„ ๋ฐฐ์—ดํ•˜๋Š” ๊ฒƒ์€ ์•„์ฃผ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์ธ์ ‘ํ•œ ์ „๊ทน ์‚ฌ์ด์— ์ ๋‹นํ•œ ๊ฐ„๊ฒฉ์ด ํ•„์š”ํ•˜๊ฒŒ ๋˜๊ณ , ์ด๋Š” ํŠนํžˆ ๋‡Œ ๋˜๋Š” ๋ง๋ง‰๊ณผ ๊ฐ™์€ ์ œํ•œ๋œ ๊ณต๊ฐ„์—์„œ ์ „๊ทน ๊ฐœ์ˆ˜์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ•œ๊ณ„๋ฅผ ์•ผ๊ธฐํ•œ๋‹ค. ์ด ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๋งŽ์€ ์—ฐ๊ตฌ์ž๋“ค์€ ์‹ค์ œ ์ „๊ทน ์‚ฌ์ด์—์„œ ํฐ ์ „๊ธฐ์žฅ ์„ธ๊ธฐ๋ฅผ ๊ฐ–๋Š” ์ค‘๊ฐ„ ์˜์—ญ์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฐ€์ƒ ์ฑ„๋„์„ ์ด์šฉํ•œ ์ž๊ทน ์ „๋žต์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๊ฐ€์ƒ ์ฑ„๋„์€ ๋‘˜ ์ด์ƒ์˜ ์ „๊ทน์—์„œ ๋™์‹œ์— ์ถœ๋ ฅ๋˜๋Š” ์ž๊ทน ํŒŒํ˜•์„ ํ•ฉ์น  ์ˆ˜ ์žˆ๋Š” ๋‹ค๊ทน์„ฑ ์ž๊ทน์— ์˜ํ•˜์—ฌ ํ˜•์„ฑ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ€์ƒ ์ฑ„๋„์„ ์ด์šฉํ•˜์—ฌ ๋” ์ •๊ตํ•œ ์ž๊ทน ํŒจํ„ด์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•˜์—ฌ, ํŠนํžˆ 2์ฐจ์›์—์„œ์˜ ๊ฐ€์ƒ ์ฑ„๋„์„ ์ƒ์„ฑํ•˜๊ณ ์ž ๊ฒฉ์žํ˜• ๋ฐฐ์—ด์˜ ์ „๊ทน๊ณผ ํ•จ๊ป˜ 5๊ทน์„ฑ ์ž๊ทน์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ด 5๊ทน์„ฑ ์ž๊ทน์€ ๋‹ค์„ฏ ๊ฐœ์˜ ์„œ๋กœ ๋‹ค๋ฅธ ์ „๋ฅ˜์›์„ ๊ฐ–๋„๋ก ๋งž์ถค ์„ค๊ณ„๋œ ์ง‘์ ํšŒ๋กœ์™€ ๊ฐœ๋ฐœ๋œ COP ๊ธฐ๋ฐ˜ ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋œ ํ‰๋ฉดํ˜• ์ „๊ทน์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ตฌํ˜„๋˜์—ˆ๋‹ค. ๋จผ์ €, 5๊ทน์„ฑ ์ž๊ทน์˜ ํšจ๊ณผ๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ์ด ์ž๊ทน์œผ๋กœ ์ „๊ธฐ์žฅ์„ ํ•œ ๊ณณ์— ๋” ์ง‘์ค‘๋œ ํ˜•ํƒœ๋กœ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Œ์ด ๋‹จ๊ทน์„ฑ ์ž๊ทน๊ณผ์˜ ๋น„๊ต๋ฅผ ํ†ตํ•˜์—ฌ ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์œ ํ•œ ์š”์†Œ ๋ถ„์„๊ณผ ์ƒ์ฒด ์™ธ ํ‰๊ฐ€ ๋‘˜ ๋ชจ๋‘๋ฅผ ํ†ตํ•˜์—ฌ, 5๊ทน์„ฑ ์ž๊ทน์œผ๋กœ ์ธํ•œ ๊ฐ€์ƒ ์ฑ„๋„ ํ˜•์„ฑ์„ ๋œปํ•˜๋Š” ์ „๊ธฐ์žฅ ๋ถ„ํฌ๊ฐ€ ์ธ์ ‘ํ•œ ๋‘ ์ „๊ทน์—์„œ ๋‚˜์˜ค๋Š” ์ž๊ทน์˜ ์ง„ํญ๋น„์™€ ๊ทธ ์ „๊ทน์œผ๋กœ๋ถ€ํ„ฐ ๋–จ์–ด์ง„ ๊ฑฐ๋ฆฌ์— ๋”ฐ๋ผ ๋ณ€ํ™”๋จ์ด ์ถ”์ •๋˜์—ˆ๋‹ค. ์…‹์งธ๋กœ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ˆˆ์— ์ด์‹๋œ ์ฑ„๋กœ ์‹ค์‹œ๊ฐ„ ์ด๋ฏธ์ง€๋ฅผ ์–ป์Œ์œผ๋กœ์จ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋ฅผ ์ƒˆ๋กœ์šด ์ด๋ฏธ์ง€ ํš๋“ ๋ฐฉ์‹์œผ๋กœ์จ ์ œ์•ˆํ•œ๋‹ค. ์ด ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ์‹ค๋ช… ํ™˜์ž๋“ค์ด ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ˆˆ์˜ ์›€์ง์ž„์„ ๋”ฐ๋ผ์„œ ๋ฌผ์ฒด๋ฅผ ๋ณผ ์ˆ˜ ์žˆ์œผ๋ฉฐ ์ž ์ด๋‚˜ ์ƒค์›Œ, ๋‹ฌ๋ฆฌ๊ธฐ์™€ ๊ฐ™์€ ์ผ์ƒ์ ์ธ ํ™œ๋™๋“ค์„ ๋ฐฉํ•ด ๋ฐ›์ง€ ์•Š๊ณ  ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ๋•๋Š”๋‹ค๋Š” ์ ์—์„œ ๋…ํŠนํ•œ ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ๊ธฐ์กด์˜ ๋ถ€๋ถ„ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ์“ฐ์ด๋Š” ์•ˆ๊ฒฝ ๋ถ€์ฐฉํ˜• ์นด๋ฉ”๋ผ์™€ ๊ฐ™์€ ์ฐฉ์šฉ ์žฅ๋น„๋กœ๋Š” ์ด๋Ÿฌํ•œ ์žฅ์ ๋“ค์„ ์–ป์„ ์ˆ˜ ์—†๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ๋ง๋ง‰ ์ž„ํ”Œ๋ž€ํŠธ์˜ ๋ฏธ์„ธ ํฌํ† ๋‹ค์ด์˜ค๋“œ ์–ด๋ ˆ์ด์™€ ๋‹ฌ๋ฆฌ ์™„์ „ํ•œ ์นด๋ฉ”๋ผ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์ด๋ฏธ์ง€ ์ •๋ณด๋ฅผ ํš๋“ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์žฅ์ ์„ ๊ฐ–๋Š”๋‹ค. ์ด๋Ÿฌํ•œ ์ด์ ๋“ค์„ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ๊ทธ ์ด์‹ํ˜• ์นด๋ฉ”๋ผ๋Š” ์ˆ˜๋ถ„ ์นจํˆฌ๋ฅผ ๋ง‰๊ณ ์ž ์ƒ์ฒด์ ํ•ฉํ•œ ์—ํญ์‹œ๋กœ ์ฝ”ํŒ…๋˜์—ˆ๊ณ  ์ƒ์ฒด์ ํ•ฉ์„ฑ๊ณผ ์œ ์—ฐ์„ฑ์„ ์–ป๊ธฐ ์œ„ํ•˜์—ฌ ์˜๋ฃŒ์šฉ ์‹ค๋ฆฌ์ฝ˜ ์—˜๋ผ์Šคํ† ๋จธ๋กœ ๋ฐ€๋ด‰๋œ ํ›„์— ๋ˆˆ์— ์ถฉ๋ถ„ํžˆ ์‚ฝ์ž…๋  ์ˆ˜ ์žˆ๋Š” ํ˜•ํƒœ ๋ฐ ํฌ๊ธฐ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ์ด ์žฅ์น˜์˜ ๋™์ž‘์€ ํ‘๋ฐฑ์œผ๋กœ ์ฒ˜๋ฆฌ๋œ ์ด๋ฏธ์ง€๋ฅผ ํ‘œ์‹œํ•˜๋Š” ๋ฌด์„  ์ด๋ฏธ์ง€ ํš๋“์œผ๋กœ ์‹œํ—˜๋˜์—ˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋ชธ ์•ˆ์—์„œ ์ด์‹ํ˜• ์นด๋ฉ”๋ผ ๊ฐ–๋Š” ์•ˆ์ •์ ์ธ ํ†ต์‹  ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, ์žฅ์น˜๊ฐ€ ์ƒ์ฒด ๋‚ด ํ™˜๊ฒฝ์„ ๋ชจ์‚ฌํ•˜๊ธฐ ์œ„ํ•œ 8 mm ๋‘๊ป˜์˜ ์ƒ์ฒด ๋ฌผ์งˆ๋กœ ๋ฎ์ธ ์ƒํƒœ์—์„œ ๊ทธ ์žฅ์น˜์˜ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„๊ฐ€ ์ธก์ •๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๊ธฐ์กด์˜ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ๋ชธ์— ๋ถ€์ฐฉ๋œ ํ˜•ํƒœ์˜ ์™ธ๋ถ€ ํ•˜๋“œ์›จ์–ด๋Š” ์ด์‹๋œ ์žฅ์น˜์— ์ „๋ ฅ๊ณผ ๋ฐ์ดํ„ฐ๋ฅผ ์•ˆ์ •์ ์œผ๋กœ ์ „๋‹ฌํ•˜๊ณ  ์ด๋ฏธ์ง€ ์‹ ํ˜ธ๋ฅผ ์ˆ˜์ง‘ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์ด๋Ÿฌํ•œ ํ•˜๋“œ์›จ์–ด๋Š” ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ์˜ ์†์ƒ์œผ๋กœ ์ธํ•œ ๊ธฐ๋Šฅ์ ์ธ ๊ฒฐํ•จ๊ณผ ์ˆ˜๋ฉด ๋ฐ ์ƒค์›Œ, ๋‹ฌ๋ฆฌ๊ธฐ, ์ˆ˜์˜ ํ™œ๋™ ์ค‘ ์ด์šฉ ๋ถˆ๊ฐ€๋Šฅ์„ฑ, ์™ธํ˜•์ ์ธ ์ด์Šˆ ๋“ฑ์„ ํฌํ•จํ•˜๋Š” ๊ณตํ†ต์ ์ธ ๋ฌธ์ œ๋“ค์„ ์•ผ๊ธฐํ•œ๋‹ค. ์ „๋ ฅ ๋ฐ ๋ฐ์ดํ„ฐ ์ „์†ก์„ ์œ„ํ•œ ์™ธ๋ถ€ ์ฝ”์ผ์€ ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์—์„œ ์ปจํŠธ๋กค๋Ÿฌ์™€ ํ”„๋กœ์„ธ์„œ์— ์œ ์„ ์œผ๋กœ ์—ฐ๊ฒฐ๋˜๊ณ , ์ด๋Ÿฌํ•œ ์—ฐ๊ฒฐ์€ ๊ทธ ์ฝ”์ผ์ด ์•ž์„œ ์–ธ๊ธ‰๋œ ๋ฌธ์ œ๋“ค์— ํŠนํžˆ ์ทจ์•ฝํ•˜๊ฒŒ ๋งŒ๋“ ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์Šˆ๋ฅผ ํ•ด๊ฒฐํ•˜๊ณ ์ž, ํœด๋Œ€์šฉ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋กœ ์ œ์–ด๋˜๋Š” ์™„์ „ ์ด์‹ํ˜• ์‹ ๊ฒฝ ์ž๊ทน ์‹œ์Šคํ…œ์ด ์ œ์•ˆ๋œ๋‹ค. ์ด ํœด๋Œ€์šฉ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋Š” ์ €์ „๋ ฅ์ด์ง€๋งŒ ๋น„๊ต์  ์žฅ๊ฑฐ๋ฆฌ ํ†ต์‹ ์ด ๊ฐ€๋Šฅํ•œ ์ง๋น„ (ZigBee) ๋ฌด์„  ํ†ต์‹ ์„ ํ†ตํ•˜์—ฌ ์žฌ์ถฉ์ „ ๊ฐ€๋Šฅํ•œ ๋ฐฐํ„ฐ๋ฆฌ๋กœ ๋™์ž‘ํ•˜๋Š” ์™„์ „ ์ด์‹ํ˜• ์ž๊ทน๊ธฐ๋ฅผ ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ์™ธ์—๋„, ์ด ํœด๋Œ€์šฉ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ํญ๋„“์€ ์‘์šฉ์„ ์œ„ํ•œ ๋‘ ๊ฐ€์ง€ ๊ธฐ๋Šฅ์„ ์ถ”๊ฐ€๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜๋‚˜๋Š” ์œ ์„  ๊ฒฝํ”ผ ์ž๊ทน์ด๋ฉฐ, ๋‹ค๋ฅธ ํ•˜๋‚˜๋Š” ์žฌ์ถฉ์ „ ๊ฐ€๋Šฅํ•œ ๋ฐฐํ„ฐ๋ฆฌ์˜ ์œ ๋„ ์ถฉ์ „ ๊ธฐ๋Šฅ์ด๋‹ค. ๋˜ํ•œ, ์ด ํœด๋Œ€์šฉ ์ปจํŠธ๋กค๋Ÿฌ์˜ ๊ฐ„๋‹จํ•œ ์Šค์œ„์น˜๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ์‚ฌ์šฉ์ž๋Š” ๊ฒŒ์ž„ํŒจ๋“œ์™€ ๊ฐ™์ด ์ž๊ทน ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์‰ฝ๊ฒŒ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํœด๋Œ€ ๊ฐ€๋Šฅํ•˜๊ณ  ์‚ฌ์šฉ์ž ์นœํ™”์ ์ธ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ƒํ™ฉ์—์„œ ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‰ฝ๊ฒŒ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ์˜ ๊ธฐ๋Šฅ์€ ์ƒ์ฒด ์™ธ ํ‰๊ฐ€๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์กฐ๋ฅ˜์˜ ์›€์ง์ž„ ์ œ์–ด๋ฅผ ์œ„ํ•œ ์œ ์„  ๊ฒฝํ”ผ ์ž๊ทน ๋ฐ ์›๊ฒฉ ์ œ์–ด๋ฅผ ํ†ตํ•ด ์ƒ์ฒด ๋‚ด์—์„œ๋„ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ๊ทธ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์‹ ๊ฒฝ ์ž๊ทน ์ œ์–ด์˜ ์ˆ˜ํ–‰ ๊ฐ€๋Šฅ์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‘ ์ƒ์ฒด ๋‚ด ์‹คํ—˜์˜ ๊ฒฐ๊ณผ๊ฐ€ ์„œ๋กœ ๋น„๊ต๋˜์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, COP ๊ธฐ๋ฐ˜์˜ ๊ฐ„๋‹จํ•œ ์ œ์ž‘ ๊ณต์ •๊ณผ 5๊ทน์„ฑ ์ž๊ทน, ์ด์‹ํ˜• ์นด๋ฉ”๋ผ, ํœด๋Œ€์šฉ ๋‹ค๊ธฐ๋Šฅ ๋ฌด์„  ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ํฌํ•จํ•˜๋Š” ์—ฐ๊ตฌ ๊ฒฐ๊ณผ์— ๋Œ€ํ•œ ์—ฌ๋Ÿฌ ๋…ผ์˜๊ฐ€ ์ด๋ฃจ์–ด์ง„๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ์™€ ๊ณ ์ฐฐ์— ๊ธฐ์ดˆํ•˜์—ฌ, ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์˜ ์—ฐ๊ตฌ๊ฐ€ ์™„์ „ ์ด์‹ํ˜• ์‹œ๊ฐ ๋ณด์ฒ  ์‹œ์Šคํ…œ์˜ ๊ตฌํ˜„์— ์–ด๋–ป๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ์ง€๊ฐ€ ์ด ๋…ผ๋ฌธ์˜ ๋์—์„œ ์ƒ์„ธํžˆ ์„ค๋ช…๋œ๋‹ค.Abstract ------------------------------------------------------------------ i Contents ---------------------------------------------------------------- vi List of Figures ---------------------------------------------------------- xi List of Tables ----------------------------------------------------------- xx List of Abbreviations ------------------------------------------------ xxii Chapter 1. Introduction --------------------------------------------- 1 1.1. Visual Prosthetic System --------------------------------------- 2 1.1.1. Current Issues ------------------------------------------------- 2 1.1.1.1. Substrate Materials ---------------------------------------- 3 1.1.1.2. Electrode Configurations --------------------------------- 5 1.1.1.3. External Hardware ----------------------------------------- 6 1.1.1.4. Other Issues ------------------------------------------------- 7 1.2. Suggested Visual Prosthetic System ------------------------ 8 1.3. Four Motivations ---------------------------------------------- 10 1.4. Proposed Approaches ---------------------------------------- 11 1.4.1. Cyclic Olefin Polymer (COP) ------------------------------ 11 1.4.2. Penta-Polar Stimulation ----------------------------------- 13 1.4.3. Implantable Camera --------------------------------------- 16 1.4.4. Handheld Remote Controller ---------------------------- 18 1.5. Objectives of this Dissertation ------------------------------ 20 Chapter 2. Materials and Methods ----------------------------- 23 2.1. COP-Based Fabrication and Encapsulation -------------- 24 2.1.1. Overview ----------------------------------------------------- 24 2.1.2. Simple Fabrication Process ------------------------------- 24 2.1.3. Depth-Type Microprobe ---------------------------------- 26 2.1.3.1. Design ----------------------------------------------------- 26 2.1.3.2. Characterization ----------------------------------------- 27 2.1.3.3. In Vivo Neural Signal Recording ---------------------- 30 2.1.4. COP Encapsulation ---------------------------------------- 31 2.1.4.1. In Vitro Reliability Test ---------------------------------- 33 2.2. Penta-Polar Stimulation ------------------------------------- 34 2.2.1. Overview ---------------------------------------------------- 34 2.2.2. Design and Fabrication ----------------------------------- 35 2.2.2.1. Integrated Circuit (IC) Design ------------------------- 35 2.2.2.2. Surface-Type Electrode Fabrication ------------------ 38 2.2.3. Evaluations -------------------------------------------------- 39 2.2.3.1. Focused Electric Field Measurement ---------------- 42 2.2.3.2. Steered Electric Field Measurement ----------------- 42 2.3. Implantable Camera ----------------------------------------- 43 2.3.1. Overview ---------------------------------------------------- 43 2.3.2. Design and Fabrication ----------------------------------- 43 2.3.2.1. Circuit Design -------------------------------------------- 43 2.3.2.2. Wireless Communication Program ------------------ 46 2.3.2.3. Epoxy Coating and Elastomer Sealing -------------- 47 2.3.3. Evaluations ------------------------------------------------- 50 2.3.3.1. Wireless Image Acquisition --------------------------- 50 2.3.3.2. Signal-to-Noise Ratio (SNR) Measurement -------- 52 2.4. Multi-Functional Handheld Remote Controller --------- 53 2.4.1. Overview ---------------------------------------------------- 53 2.4.2. Design and Fabrication ----------------------------------- 53 2.4.2.1. Hardware Description ---------------------------------- 53 2.4.2.2. Software Description ----------------------------------- 57 2.4.3. Evaluations -------------------------------------------------- 57 2.4.3.1. In Vitro Evaluation -------------------------------------- 57 2.4.3.2. In Vivo Evaluation --------------------------------------- 59 Chapter 3. Results ------------------------------------------------- 61 3.1. COP-Based Fabrication and Encapsulation ------------- 62 3.1.1. Fabricated Depth-Type Microprobe ------------------- 62 3.1.1.1. Electrochemical Impedance -------------------------- 63 3.1.1.2. Mechanical Characteristics --------------------------- 64 3.1.1.3. In Vivo Neural Signal Recording --------------------- 66 3.1.2. COP Encapsulation --------------------------------------- 68 3.1.2.1. In Vitro Reliability Test --------------------------------- 68 3.2. Penta-Polar Stimulation ------------------------------------ 70 3.2.1. Fabricated IC and Surface-Type Electrodes ---------- 70 3.2.2. Evaluations ------------------------------------------------- 73 3.2.2.1. Focused Electric Field Measurement --------------- 73 3.2.2.2. Steered Electric Field Measurement ---------------- 75 3.3. Implantable Camera ---------------------------------------- 76 3.3.1. Fabricated Implantable Camera ----------------------- 76 3.3.2. Evaluations ------------------------------------------------ 77 3.3.2.1. Wireless Image Acquisition -------------------------- 77 3.3.2.2. SNR Measurement ------------------------------------ 78 3.4. Multi-Functional Handheld Remote Controller ------- 80 3.4.1. Fabricated Remote Controller ------------------------- 80 3.4.2. Evaluations ------------------------------------------------ 81 3.4.2.1. In Vitro Evaluation ------------------------------------ 81 3.4.2.2. In Vivo Evaluation ------------------------------------- 83 Chapter 4. Discussions ------------------------------------------ 86 4.1. COP-Based Fabrication and Encapsulation ------------ 87 4.1.1. Fabrication Process and Fabricated Devices -------- 87 4.1.2. Encapsulation and Optical Transparency ------------ 89 4.2. Penta-Polar Stimulation------------------------------------ 99 4.2.1. Designed IC and Electrode Configurations --------- 99 4.2.2. Virtual Channels in Two Dimensions ---------------- 101 4.3. Implantable Camera -------------------------------------- 102 4.3.1. Enhanced Reliability by Epoxy Coating ------------- 106 4.4. Multi-Functional Handheld Remote Controller ------ 107 4.4.1. Brief Discussions of the Two Extra Functions ------ 108 4.5. Totally Implantable Visual Prosthetic System --------- 113 Chapter 5. Conclusion ------------------------------------------ 117 References -------------------------------------------------------- 121 Supplements ------------------------------------------------------ 133 ๊ตญ๋ฌธ ์ดˆ๋ก ----------------------------------------------------------- 143Docto
    • โ€ฆ
    corecore