1,478 research outputs found

    A Comparative Performance of Discrete Wavelet Transform Implementations Using Multiplierless

    Get PDF
    Using discrete wavelet transform (DWT) in high-speed signal-processing applications imposes a high degree of care to hardware resource availability, latency, and power consumption. In this chapter, the design aspects and performance of multiplierless DWT is analyzed. We presented the two key multiplierless approaches, namely the distributed arithmetic algorithm (DAA) and the residue number system (RNS). We aim to estimate the performance requirements and hardware resources for each approach, allowing for the selection of proper algorithm and implementation of multi-level DAA- and RNS-based DWT. The design has been implemented and synthesized in Xilinx Virtex 6 ML605, taking advantage of Virtex 6’s embedded block RAMs (BRAMs)

    Sparse Representation of Astronomical Images

    Get PDF
    Sparse representation of astronomical images is discussed. It is shown that a significant gain in sparsity is achieved when particular mixed dictionaries are used for approximating these types of images with greedy selection strategies. Experiments are conducted to confirm: i)Effectiveness at producing sparse representations. ii)Competitiveness, with respect to the time required to process large images.The latter is a consequence of the suitability of the proposed dictionaries for approximating images in partitions of small blocks.This feature makes it possible to apply the effective greedy selection technique Orthogonal Matching Pursuit, up to some block size. For blocks exceeding that size a refinement of the original Matching Pursuit approach is considered. The resulting method is termed Self Projected Matching Pursuit, because is shown to be effective for implementing, via Matching Pursuit itself, the optional back-projection intermediate steps in that approach.Comment: Software to implement the approach is available on http://www.nonlinear-approx.info/examples/node1.htm

    Daubechies wavelets as a basis set for density functional pseudopotential calculations

    Full text link
    Daubechies wavelets are a powerful systematic basis set for electronic structure calculations because they are orthogonal and localized both in real and Fourier space. We describe in detail how this basis set can be used to obtain a highly efficient and accurate method for density functional electronic structure calculations. An implementation of this method is available in the ABINIT free software package. This code shows high systematic convergence properties, very good performances and an excellent efficiency for parallel calculations.Comment: 15 pages, 11 figure

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC

    Get PDF
    Parkinson's disease is a recognizable clinical syndrome with a variety of causes and clinical presentations; it represents a rapidly growing neurodegenerative disorder. Since about 90 percent of Parkinson's disease sufferers have some form of early speech impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the recognition of voice impairments from vowel phonations or the subjects' discourse. In this paper, we present a new approach for Parkinson's disease detection from speech sounds that are based on CNN and LSTM and uses two categories of characteristics Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) obtained from noise-removed speech signals with comparative EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD methods. In the second step, the GTCC and MFCC are extracted from the enhanced audio signals. The classification process is carried out in the third step by feeding these features into the LSTM and CNN models, which are designed to define sequential information from the extracted features. The experiments are performed using PC-GITA and Sakar datasets and 10-fold cross validation method, the highest classification accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of this study indicate that the characteristics of GTCC are more appropriate and accurate for the assessment of PD than MFCC

    Layer Selection in Progressive Transmission of Motion-Compensated JPEG2000 Video

    Get PDF
    MCJ2K (Motion-Compensated JPEG2000) is a video codec based on MCTF (Motion- Compensated Temporal Filtering) and J2K (JPEG2000). MCTF analyzes a sequence of images, generating a collection of temporal sub-bands, which are compressed with J2K. The R/D (Rate-Distortion) performance in MCJ2K is better than the MJ2K (Motion JPEG2000) extension, especially if there is a high level of temporal redundancy. MCJ2K codestreams can be served by standard JPIP (J2K Interactive Protocol) servers, thanks to the use of only J2K standard file formats. In bandwidth-constrained scenarios, an important issue in MCJ2K is determining the amount of data of each temporal sub-band that must be transmitted to maximize the quality of the reconstructions at the client side. To solve this problem, we have proposed two rate-allocation algorithms which provide reconstructions that are progressive in quality. The first, OSLA (Optimized Sub-band Layers Allocation), determines the best progression of quality layers, but is computationally expensive. The second, ESLA (Estimated-Slope sub-band Layers Allocation), is sub-optimal in most cases, but much faster and more convenient for real-time streaming scenarios. An experimental comparison shows that even when a straightforward motion compensation scheme is used, the R/D performance of MCJ2K competitive is compared not only to MJ2K, but also with respect to other standard scalable video codecs
    corecore