7 research outputs found

    Parallel processing applied to image mosaic generation

    Get PDF
    The automatic construction of large mosaics obtained from high resolution digital images is an area of great importance, with applications in different areas. In agriculture, the requirements of cartographic accuracy of mosaics of annual or perennial crops are not so high, but the speed in obtaining them is the most critical factor. The efficiency in decision making is related to the obtaining faster and more accurate information, especially in the control of pests, diseases or fire control. This project proposes a methodology based on SIFT Transform and parallel processing to build mosaics automatically, using high resolution agricultural aerial images. Build mosaics with high resolution images requires high computational effort for processing them. To treat the problem of computational effort, the standard OpenMP of parallel processing was used to accelerate the process and results are presented for a computer with 2, 4 and 8 threads

    Development of a High-Resolution Land Cover Dataset to Support Integrated Water Resources Planning and Management in Northern Utah

    Get PDF
    Integrated planning and management approaches, including bioregional planning and integrated water resources planning, are comprehensive strategies that strive to balance the sustainability of natural resources and the integrity of ecosystem processes with human development and activities. Implementation of integrated plans and programs remains complicated. However, geospatial technologies, such as geographic information systems and remote sensing, can significantly enhance planning and management processes. Through a United States Environmental Protection Agency Region 8 Wetland Program Development Grant, a high-resolution land cover dataset, with a primary emphasis on mapping and quantifying impervious surfaces, was developed for three watershed sub-basins in northern Utah - Lower Bear-Malad, Lower Weber, and Jordan - to support integrated water resources planning and management. This high-resolution land cover dataset can serve as an indicator of cumulative stress from urbanization; it can support the development of ecologically relevant metrics that can be integrated into watershed health and wetland condition assessments; it can provide general assessments of watershed condition; and it can support the identification of sites in need of restoration and protection

    Proceedings of the 3rd Open Source Geospatial Research & Education Symposium OGRS 2014

    Get PDF
    The third Open Source Geospatial Research & Education Symposium (OGRS) was held in Helsinki, Finland, on 10 to 13 June 2014. The symposium was hosted and organized by the Department of Civil and Environmental Engineering, Aalto University School of Engineering, in partnership with the OGRS Community, on the Espoo campus of Aalto University. These proceedings contain the 20 papers presented at the symposium. OGRS is a meeting dedicated to exchanging ideas in and results from the development and use of open source geospatial software in both research and education.  The symposium offers several opportunities for discussing, learning, and presenting results, principles, methods and practices while supporting a primary theme: how to carry out research and educate academic students using, contributing to, and launching open source geospatial initiatives. Participating in open source initiatives can potentially boost innovation as a value creating process requiring joint collaborations between academia, foundations, associations, developer communities and industry. Additionally, open source software can improve the efficiency and impact of university education by introducing open and freely usable tools and research results to students, and encouraging them to get involved in projects. This may eventually lead to new community projects and businesses. The symposium contributes to the validation of the open source model in research and education in geoinformatics

    Forum Bildverarbeitung 2016

    Get PDF
    Bildverarbeitung spielt in vielen Bereichen der Technik zur schnellen und berĂŒhrungslosen Datenerfassung eine SchlĂŒsselrolle. Der vorliegende Tagungsband des „Forums Bildverarbeitung“, das am 1. und 2. Dezember 2016 in Karlsruhe als Veranstaltung des Karlsruher Instituts fĂŒr Technologie und des Fraunhofer-Instituts fĂŒr Optronik, Systemtechnik und Bildauswertung stattfand, enthĂ€lt die AufsĂ€tze der eingegangenen BeitrĂ€ge. Darin wird ĂŒber aktuelle Trends und Lösungen der Bildverarbeitung berichtet

    Resizable outerwear templates for virtual design and pattern flattening

    Get PDF
    The aim of this research was to implement a computer-aided 3D to 2D pattern development technique for outerwear. A preponderance of total clothing consumption is of garments in this category, which are designed to offer the wearer significant levels of ease. Yet there has not previously been on the market any system which offers a practical solution to the problems of 3D design and pattern flattening for clothing in this category. A set of 3D outerwear templates, one for men’s shirts and another for men’s trousers, has been developed to execute pattern flattening from virtual designs and this approach offers significant reduction in time and manpower involvement in the clothing development phase by combining creative and technical garment design processes into a single step. The outerwear templates developed and demonstrated in this research work can provide 3D design platforms for clothing designers to create virtual clothing as a surface layer which can be flattened to create a traditional pattern. Point-Cloud data captured by a modern white-light-based 3D body-scanning system were used as the basic input for creating the outerwear templates. A set of sectional curves, representative of anthropometric size parameters, was extracted from a virtual model generated from the body scan data by using reverse engineering software. These sectional curves were then modified to reproduce the required profile upon which to create items of men’s outerwear. The curves were made symmetrical, as required, before scaling to impart resizability. Using geometric modelling technique, a new surface was generated out of these resizable curves to form the required 3D outerwear templates. Through a set of functionality tests, it has been found that both of the templates developed in this research may be used for virtual design, 3D grading and pattern flattening
    corecore