2,350 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    An analysis of the lifetime of OLSR networks

    Get PDF
    The Optimized Link State Routing (OLSR) protocol is a well-known route discovery protocol for ad-hoc networks. OLSR optimizes the flooding of link state information through the network using multipoint relays (MPRs). Only nodes selected as MPRs are responsible for forwarding control traffic. Many research papers aim to optimize the selection of MPRs with a specific purpose in mind: e.g., to minimize their number, to keep paths with high Quality of Service or to maximize the network lifetime (the time until the first node runs out of energy). In such analyzes often the effects of the network structure on the MPR selection are not taken into account. In this paper we show that the structure of the network can have a large impact on the MPR selection. In highly regular structures (such as grids) there is even no variation in the MPR sets that result from various MPR selection mechanisms. Furthermore, we study the influence of the network structure on the network lifetime problem in a setting where at regular intervals messages are broadcasted using MPRs. We introduce the ’maximum forcedness ratio’, as a key parameter of the network to describe how much variation there is in the lifetime results of various MPR selection heuristics. Although we focus our attention to OLSR, being a widely implemented protocol, on a more abstract level our results describe the structure of connected sets dominating the 2-hop neighborhood of a node

    Design and analysis of a beacon-less routing protocol for large volume content dissemination in vehicular ad hoc networks

    Get PDF
    Largevolumecontentdisseminationispursuedbythegrowingnumberofhighquality applications for Vehicular Ad hoc NETworks(VANETs), e.g., the live road surveillance service and the video-based overtaking assistant service. For the highly dynamical vehicular network topology, beacon-less routing protocols have been proven to be efficient in achieving a balance between the system performance and the control overhead. However, to the authors’ best knowledge, the routing design for large volume content has not been well considered in the previous work, which will introduce new challenges, e.g., the enhanced connectivity requirement for a radio link. In this paper, a link Lifetime-aware Beacon-less Routing Protocol (LBRP) is designed for large volume content delivery in VANETs. Each vehicle makes the forwarding decision based on the message header information and its current state, including the speed and position information. A semi-Markov process analytical model is proposed to evaluate the expected delay in constructing one routing path for LBRP. Simulations show that the proposed LBRP scheme outperforms the traditional dissemination protocols in providing a low end-to-end delay. The analytical model is shown to exhibit a good match on the delay estimation with Monte Carlo simulations, as well

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    The support of multipath routing in IPv6-based internet of things

    Get PDF
    The development of IPv6-based network architectures for Internet of Things (IoT) systems is a feasible approach to widen the horizon for more effective applications, but remains a challenge. Network routing needs to be effectively addressed in such environments of scarce computational and energy resources. The Internet Engineering Task Force (IETF) specified the IPv6 Routing Protocol for Low Power and Lossy Network (RPL) to provide a basic IPv6-based routing framework for IoT networks. However, the RPL design has the potential of extending its functionality to a further limit and incorporating the support of advanced routing mechanisms. These include multipath routing which has opened the doors for great improvements towards efficient energy balancing, load distribution, and even more. This paper fulfilled a need for an effective review of recent advancements in Internet of Things (IoT) networking. In particular, it presented an effective review and provided a taxonomy of the different multipath routing solutions enhancing the RPL protocol. The aim was to discover its current state and outline the importance of integrating such a mechanism into RPL to revive its potentiality to a wider range of IoT applications. This paper also discussed the latest research findings and provided some insights into plausible follow-up researches

    Real-Time QoS Routing Protocols in Wireless Multimedia Sensor Networks: Study and Analysis

    Get PDF
    Many routing protocols have been proposed for wireless sensor networks. These routing protocols are almost always based on energy efficiency. However, recent advances in complementary metal-oxide semiconductor (CMOS) cameras and small microphones have led to the development of Wireless Multimedia Sensor Networks (WMSN) as a class of wireless sensor networks which pose additional challenges. The transmission of imaging and video data needs routing protocols with both energy efficiency and Quality of Service (QoS) characteristics in order to guarantee the efficient use of the sensor nodes and effective access to the collected data. Also, with integration of real time applications in Wireless Senor Networks (WSNs), the use of QoS routing protocols is not only becoming a significant topic, but is also gaining the attention of researchers. In designing an efficient QoS routing protocol, the reliability and guarantee of end-to-end delay are critical events while conserving energy. Thus, considerable research has been focused on designing energy efficient and robust QoS routing protocols. In this paper, we present a state of the art research work based on real-time QoS routing protocols for WMSNs that have already been proposed. This paper categorizes the real-time QoS routing protocols into probabilistic and deterministic protocols. In addition, both categories are classified into soft and hard real time protocols by highlighting the QoS issues including the limitations and features of each protocol. Furthermore, we have compared the performance of mobility-aware query based real-time QoS routing protocols from each category using Network Simulator-2 (NS2). This paper also focuses on the design challenges and future research directions as well as highlights the characteristics of each QoS routing protocol.https://doi.org/10.3390/s15092220

    Gafor : Genetic algorithm based fuzzy optimized re-clustering in wireless sensor networks

    Get PDF
    Acknowledgments: The authors are grateful to the Deanship of Scientific Research at King Saud University for funding this work through Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing. Funding: This research was funded by King Saud University in 2020.Peer reviewedPublisher PD
    • …
    corecore