339 research outputs found

    Cloud Workload Allocation Approaches for Quality of Service Guarantee and Cybersecurity Risk Management

    Get PDF
    It has become a dominant trend in industry to adopt cloud computing --thanks to its unique advantages in flexibility, scalability, elasticity and cost efficiency -- for providing online cloud services over the Internet using large-scale data centers. In the meantime, the relentless increase in demand for affordable and high-quality cloud-based services, for individuals and businesses, has led to tremendously high power consumption and operating expense and thus has posed pressing challenges on cloud service providers in finding efficient resource allocation policies. Allowing several services or Virtual Machines (VMs) to commonly share the cloud\u27s infrastructure enables cloud providers to optimize resource usage, power consumption, and operating expense. However, servers sharing among users and VMs causes performance degradation and results in cybersecurity risks. Consequently, how to develop efficient and effective resource management policies to make the appropriate decisions to optimize the trade-offs among resource usage, service quality, and cybersecurity loss plays a vital role in the sustainable future of cloud computing. In this dissertation, we focus on cloud workload allocation problems for resource optimization subject to Quality of Service (QoS) guarantee and cybersecurity risk constraints. To facilitate our research, we first develop a cloud computing prototype that we utilize to empirically validate the performance of different proposed cloud resource management schemes under a close to practical, but also isolated and well-controlled, environment. We then focus our research on the resource management policies for real-time cloud services with QoS guarantee. Based on queuing model with reneging, we establish and formally prove a series of fundamental principles, between service timing characteristics and their resource demands, and based on which we develop several novel resource management algorithms that statically guarantee the QoS requirements for cloud users. We then study the problem of mitigating cybersecurity risk and loss in cloud data centers via cloud resource management. We employ game theory to model the VM-to-VM interdependent cybersecurity risks in cloud clusters. We then conduct a thorough analysis based on our game-theory-based model and develop several algorithms for cybersecurity risk management. Specifically, we start our cybersecurity research from a simple case with only two types of VMs and next extend it to a more general case with an arbitrary number of VM types. Our intensive numerical and experimental results show that our proposed algorithms can significantly outperform the existing methodologies for large-scale cloud data centers in terms of resource usage, cybersecurity loss, and computational effectiveness

    Security in Cloud Computing: Evaluation and Integration

    Get PDF
    Au cours de la derniĂšre dĂ©cennie, le paradigme du Cloud Computing a rĂ©volutionnĂ© la maniĂšre dont nous percevons les services de la Technologie de l’Information (TI). Celui-ci nous a donnĂ© l’opportunitĂ© de rĂ©pondre Ă  la demande constamment croissante liĂ©e aux besoins informatiques des usagers en introduisant la notion d’externalisation des services et des donnĂ©es. Les consommateurs du Cloud ont gĂ©nĂ©ralement accĂšs, sur demande, Ă  un large Ă©ventail bien rĂ©parti d’infrastructures de TI offrant une plĂ©thore de services. Ils sont Ă  mĂȘme de configurer dynamiquement les ressources du Cloud en fonction des exigences de leurs applications, sans toutefois devenir partie intĂ©grante de l’infrastructure du Cloud. Cela leur permet d’atteindre un degrĂ© optimal d’utilisation des ressources tout en rĂ©duisant leurs coĂ»ts d’investissement en TI. Toutefois, la migration des services au Cloud intensifie malgrĂ© elle les menaces existantes Ă  la sĂ©curitĂ© des TI et en crĂ©e de nouvelles qui sont intrinsĂšques Ă  l’architecture du Cloud Computing. C’est pourquoi il existe un rĂ©el besoin d’évaluation des risques liĂ©s Ă  la sĂ©curitĂ© du Cloud durant le procĂ©dĂ© de la sĂ©lection et du dĂ©ploiement des services. Au cours des derniĂšres annĂ©es, l’impact d’une efficace gestion de la satisfaction des besoins en sĂ©curitĂ© des services a Ă©tĂ© pris avec un sĂ©rieux croissant de la part des fournisseurs et des consommateurs. Toutefois, l’intĂ©gration rĂ©ussie de l’élĂ©ment de sĂ©curitĂ© dans les opĂ©rations de la gestion des ressources du Cloud ne requiert pas seulement une recherche mĂ©thodique, mais aussi une modĂ©lisation mĂ©ticuleuse des exigences du Cloud en termes de sĂ©curitĂ©. C’est en considĂ©rant ces facteurs que nous adressons dans cette thĂšse les dĂ©fis liĂ©s Ă  l’évaluation de la sĂ©curitĂ© et Ă  son intĂ©gration dans les environnements indĂ©pendants et interconnectĂ©s du Cloud Computing. D’une part, nous sommes motivĂ©s Ă  offrir aux consommateurs du Cloud un ensemble de mĂ©thodes qui leur permettront d’optimiser la sĂ©curitĂ© de leurs services et, d’autre part, nous offrons aux fournisseurs un Ă©ventail de stratĂ©gies qui leur permettront de mieux sĂ©curiser leurs services d’hĂ©bergements du Cloud. L’originalitĂ© de cette thĂšse porte sur deux aspects : 1) la description innovatrice des exigences des applications du Cloud relativement Ă  la sĂ©curitĂ© ; et 2) la conception de modĂšles mathĂ©matiques rigoureux qui intĂšgrent le facteur de sĂ©curitĂ© dans les problĂšmes traditionnels du dĂ©ploiement des applications, d’approvisionnement des ressources et de la gestion de la charge de travail au coeur des infrastructures actuelles du Cloud Computing. Le travail au sein de cette thĂšse est rĂ©alisĂ© en trois phases.----------ABSTRACT: Over the past decade, the Cloud Computing paradigm has revolutionized the way we envision IT services. It has provided an opportunity to respond to the ever increasing computing needs of the users by introducing the notion of service and data outsourcing. Cloud consumers usually have online and on-demand access to a large and distributed IT infrastructure providing a plethora of services. They can dynamically configure and scale the Cloud resources according to the requirements of their applications without becoming part of the Cloud infrastructure, which allows them to reduce their IT investment cost and achieve optimal resource utilization. However, the migration of services to the Cloud increases the vulnerability to existing IT security threats and creates new ones that are intrinsic to the Cloud Computing architecture, thus the need for a thorough assessment of Cloud security risks during the process of service selection and deployment. Recently, the impact of effective management of service security satisfaction has been taken with greater seriousness by the Cloud Service Providers (CSP) and stakeholders. Nevertheless, the successful integration of the security element into the Cloud resource management operations does not only require methodical research, but also necessitates the meticulous modeling of the Cloud security requirements. To this end, we address throughout this thesis the challenges to security evaluation and integration in independent and interconnected Cloud Computing environments. We are interested in providing the Cloud consumers with a set of methods that allow them to optimize the security of their services and the CSPs with a set of strategies that enable them to provide security-aware Cloud-based service hosting. The originality of this thesis lies within two aspects: 1) the innovative description of the Cloud applications’ security requirements, which paved the way for an effective quantification and evaluation of the security of Cloud infrastructures; and 2) the design of rigorous mathematical models that integrate the security factor into the traditional problems of application deployment, resource provisioning, and workload management within current Cloud Computing infrastructures. The work in this thesis is carried out in three phases

    Secure policies for the distributed virtual machines in mobile cloud computing

    Get PDF
    Mobile Cloud Computing (MCC) is a combination of cloud computing and mobile computing through wireless technology in order to overcome mobile devices' resource limitations. In MCC, virtualization plays a key role whereas the cloud resources are shared among many users to help them achieve an efficient performance and exploiting the maximum capacity of the cloud’s servers. However, the lack of security aspect impedes the benefits of virtualization techniques, whereby malicious users can violate and damage sensitive data in distributed Virtual Machines (VMs). Thus, this study aims to provide protection of distributed VMs and mobile user’s sensitive data in terms of security and privacy. This study proposes an approach based on cloud proxy known as Proxy-3S that combines three security policies for VMs; user’s access control, secure allocation, and secure communication. The Proxy-3S keeps the distributed VMs safe in different servers on the cloud. It enhances the grants access authorization for permitted distributed intensive applications’ tasks. Furthermore, an algorithm that enables secure communication among distributed VMs and protection of sensitive data in VMs on the cloud is proposed. A prototype is implemented on a NetworkCloudSim simulator to manage VMs security and data confidentiality automatically. Several experiments were conducted using real-world healthcare distributed application in terms of efficiency, coverage and execution time. The experiments show that the proposed approach achieved lower attacker’s efficiency and coverage ratios; equal to 0.35 and 0.41 respectively in all experimented configurations compared with existing works. In addition, the execution time of the proposed approach is satisfactory ranging from 441ms to 467ms of small and large cloud configurations. This study serves to provide integrity and confidentiality in exchanging sensitive information among multistakeholder in distributed mobile applications

    SECURING THE DATA STORAGE AND PROCESSING IN CLOUD COMPUTING ENVIRONMENT

    Get PDF
    Organizations increasingly utilize cloud computing architectures to reduce costs and en- ergy consumption both in the data warehouse and on mobile devices by better utilizing the computing resources available. However, the security and privacy issues with publicly available cloud computing infrastructures have not been studied to a sufficient depth for or- ganizations and individuals to be fully informed of the risks; neither are private nor public clouds prepared to properly secure their connections as middle-men between mobile de- vices which use encryption and external data providers which neglect to encrypt their data. Furthermore, cloud computing providers are not well informed of the risks associated with policy and techniques they could implement to mitigate those risks. In this dissertation, we present a new layered understanding of public cloud comput- ing. On the high level, we concentrate on the overall architecture and how information is processed and transmitted. The key idea is to secure information from outside attack and monitoring. We use techniques such as separating virtual machine roles, re-spawning virtual machines in high succession, and cryptography-based access control to achieve a high-level assurance of public cloud computing security and privacy. On the low level, we explore security and privacy issues on the memory management level. We present a mechanism for the prevention of automatic virtual machine memory guessing attacks

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Crowdfunding Non-fungible Tokens on the Blockchain

    Get PDF
    Non-fungible tokens (NFTs) have been used as a way of rewarding content creators. Artists publish their works on the blockchain as NFTs, which they can then sell. The buyer of an NFT then holds ownership of a unique digital asset, which can be resold in much the same way that real-world art collectors might trade paintings. However, while a deal of effort has been spent on selling works of art on the blockchain, very little attention has been paid to using the blockchain as a means of fundraising to help finance the artist’s work in the first place. Additionally, while blockchains like Ethereum are ideal for smaller works of art, additional support is needed when the artwork is larger than is feasible to store on the blockchain. In this paper, we propose a fundraising mechanism that will help artists to gain financial support for their initiatives, and where the backers can receive a share of the profits in exchange for their support. We discuss our prototype implementation using the SpartanGold framework. We then discuss how this system could be expanded to support large NFTs with the 0Chain blockchain, and describe how we could provide support for ongoing storage of these NFTs

    Fake Malware Generation Using HMM and GAN

    Get PDF
    In the past decade, the number of malware attacks have grown considerably and, more importantly, evolved. Many researchers have successfully integrated state-of-the-art machine learning techniques to combat this ever present and rising threat to information security. However, the lack of enough data to appropriately train these machine learning models is one big challenge that is still present. Generative modelling has proven to be very efficient at generating image-like synthesized data that can match the actual data distribution. In this paper, we aim to generate malware samples as opcode sequences and attempt to differentiate them from the real ones with the goal to build fake malware data that can be used to effectively train the machine learning models. We use and compare different Generative Adversarial Networks (GAN) algorithms and Hidden Markov Models (HMM) to generate such fake samples obtaining promising results
    • 

    corecore