67,747 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A multi-agent platform for auction-based allocation of loads in transportation logistics

    No full text
    This paper describes an agent-based platform for the allocation of loads in distributed transportation logistics, developed as a collaboration between CWI, Dutch National Center for Mathematics and Computer Science, Amsterdam and Vos Logistics Organizing, Nijmegen, The Netherlands. The platform follows a real business scenario proposed by Vos, and it involves a set of agents bidding for transportation loads to be distributed from a central depot in the Netherlands to different locations across Germany. The platform supports both human agents (i.e. transportation planners), who can bid through specialized planning and bidding interfaces, as well as automated, software agents. We exemplify how the proposed platform can be used to test both the bidding behaviour of human logistics planners, as well as the performance of automated auction bidding strategies, developed for such settings. The paper first introduces the business problem setting and then describes the architecture and main characteristics of our auction platform. We conclude with a preliminary discussion of our experience from a human bidding experiment, involving Vos planners competing for orders both against each other and against some (simple) automated strategies

    Model Predictive Control Based Trajectory Generation for Autonomous Vehicles - An Architectural Approach

    Full text link
    Research in the field of automated driving has created promising results in the last years. Some research groups have shown perception systems which are able to capture even complicated urban scenarios in great detail. Yet, what is often missing are general-purpose path- or trajectory planners which are not designed for a specific purpose. In this paper we look at path- and trajectory planning from an architectural point of view and show how model predictive frameworks can contribute to generalized path- and trajectory generation approaches for generating safe trajectories even in cases of system failures.Comment: Presented at IEEE Intelligent Vehicles Symposium 2017, Los Angeles, CA, US

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations
    • 

    corecore