2,645 research outputs found

    A satellite navigation system to improve the management of intermodal drayage

    Get PDF
    The intermodal transport chain can become more efficient by means of a good organization of the drayage movements. Drayage in intermodal container terminals involves the pick up or delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the different vehicles, often with the presence of time windows. The literature shows some works on centralised drayage management, but most of them consider the problem only from a static and deterministic perspective, whereas the work we present here incorporates the knowledge of the real-time position of the vehicles, which permanently enables the planner to reassign tasks in case the problem conditions change. This exact knowledge of position of the vehicles is possible thanks to a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    Dynamic approach to solve the daily drayage problem with travel time uncertainty

    Get PDF
    The intermodal transport chain can become more e cient by means of a good organization of drayage movements. Drayage in intermodal container terminals involves the pick up and delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the di erent vehicles, often with the presence of time windows. This scheduling has traditionally been done once a day and, under these conditions, any unexpected event could cause timetable delays. We propose to use the real-time knowledge about vehicle position to solve this problem, which permanently allows the planner to reassign tasks in case the problem conditions change. This exact knowledge of the position of the vehicles is possible using a geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this additional data can be used to dynamically improve the solution

    A viral system to optimise the daily drayage problem

    Get PDF
    The intermodal transport chain can become more efficient by means of a good organisation of the drayage movements. Drayage in intermodal container terminals involves the pick up or delivery of containers at customer locations, and the main objective is normally the assignment of transportation tasks to the different vehicles, often with the presence of time windows. This paper focuses on a new approach to tackle the daily drayage problem by the use of viral system (VS). VS is a novel bio-inspired approach that makes use of a virus-infection biological analogy that is producing very satisfactory results when dealing with complex problems with huge feasibility region.Unión Europea TEC2013-47286-C3-3-

    Hybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertainty

    Get PDF
    The increasing volumes of road transportation contribute to congestion on road, which leads to delays and other negative impacts on the reliability of transportation. Moreover, transportation is one of the main contributors to the growth of carbon dioxide equivalent emissions, where the impact of road transportation is significant. Therefore, governmental organizations and private commercial companies are looking for greener transportation solutions to eliminate the negative externalities of road transportation. In this paper, we present a novel solution framework to support the operational-level decisions for intermodal transportation networks using a combination of an optimization model and simulation. The simulation model includes stochastic elements in form of uncertain travel times, whereas the optimization model represents a deterministic and linear multi-commodity service network design formulation. The intermodal transportation plan can be optimized according to different objectives, including costs, time and CO2e emissions. The proposed approach is successfully implemented to real-life scenarios where differences in transportation plans for alternative objectives are presented. The solutions for transportation networks with up to 250 services and 20 orders show that the approach is capable of delivering reliable solutions and identifying possible disruptions and alternatives for adapting the unreliable transportation plans

    Green intermodal freight transportation: bi-objective modeling and analysis

    Get PDF
    Efficient planning of freight transportation requires a comprehensive look at wide range of factors in the operation and management of any transportation mode to achieve safe, fast, and environmentally suitable movement of goods. In this regard, a combination of transportation modes offers flexible and environmentally friendly alternatives to transport high volumes of goods over long distances. In order to reflect the advantages of each transportation mode, it is the challenge to develop models and algorithms in Transport Management System software packages. This paper discusses the principles of green logistics required in designing such models and algorithms which truly represent multiple modes and their characteristics. Thus, this research provides a unique practical contribution to green logistics literature by advancing our understanding of the multi-objective planning in intermodal freight transportation. Analysis based on a case study from hinterland intermodal transportation in Europe is therefore intended to make contributions to the literature about the potential benefits from combining economic and environmental criteria in transportation planning. An insight derived from the experiments conducted shows that there is no need to greatly compromise on transportation costs in order to achieve a significant reduction in carbon-related emissions

    Systematic Review of Literature on Dry Port Concept Evolution

    Get PDF
    Dry port plays an important role in supply chain management and mitigates seaport problems. The aim of this paper is to review the dry port concept over the different phases. Today there are different types of dry ports, different interpretations on the dry port life cycle, and different relations with seaport. We will provide a clear vision on the concept development and the advantages that can be added to the seaport and transportation flow. Then, the study will show the evolution of the research community interest on the concept. In the first step, we will briefly present all the challenges faced by seaports today. Next, we will undertake a systematic literature review in order to provide a global vision able to answer questions concerning dry port concept, types, research evolution. Finally, we will present some research topics that open for us at the dry port seaport system

    Dry ports: research outcomes, trends, and future implications

    Get PDF
    The concept of dry ports has gained significant interest among practitioners and researchers in the last decade. Consequently, publications on this topic have followed this development, and today there are more than 100 papers available in the Scopus and Science Direct databases, compared with only two papers in 2007. The purpose of this paper is to summarize current scientific knowledge on the phenomenon and to identify research outcomes, trends, and future research implications by conducting a systematic literature review (SLR). SLR is an explicit and reproducible method that ensures the reliability and traceability of the results. The selection of relevant papers was performed independently by each author using Rayyan QCRI software; the coding and analysis were conducted with the help of NVivo qualitative data analysis software. Findings show that the research area is largely represented by qualitative cases and optimization studies covering various aspects of dry ports. Dry port examples around the world differ based on location, functions, services, ownership, and maturity level. Although the research area is young and discrete, five main thematic areas are identified: debate on the concept, environmental impact, economic impact, performance impact, and dry ports from a network perspective

    The load planning problem for double-stack intermodal trains

    Full text link
    Les trains qui transportent des conteneurs empilés (en deux niveaux) sont un élément important du reseau de transport nord-americain. Le probleme de chargement des wagons correspond un probleme operationnel d'utilisation rencontre dans les terminaux ferroviaires. Elle consiste optimiser l’affectation des conteneurs des emplacements spécifiques sur les wagons. Ce mémoire est centré sur un article scientifique traitant le chargement optimal publié dans le Journal Européen de Recherche Opérationnelle (Volume 267, Numéro 1, Pages 107-119, 2018). Nous avons formule un modele lineaire en nombres entiers (ILP) et apporte un certain nombre de contributions. Premierement, nous avons proposé une méthodologie générale qui peut traiter des wagons double ou simple empilement avec des «patrons» de chargement arbitraires. Les les patrons tiennent un compte des dépendances de chargement entre les plateformes sur un wagon donne. Deuxiemement, nous avons modéliser les restrictions du centre de gravité (COG), les regles d’empilement et un nombre de restrictions techniques de chargement associees certains types de conteneurs et / ou de marchandises. Les resultats montrent que nous pouvons resoudre des instances de taille realiste dans un d´elai raisonnable en utilisant un solveur ILP commercial et nous illustrons que le fait de ne pas tenir compte de la correspondance conteneurs-wagons ainsi que des restrictions COG peut conduire une surestimation de la capacité disponible.Double-stack trains are an important component of the railroad transport network for containerized cargo in specific markets such as North America. The load planning problem embodies an operational problem commonly faced in rail terminals by operators. It consists in optimizing the assignment of containers to specific locations on the train. The work in this thesis is centered around a scientific paper on the optimization on load planning problem for double stack-trains, published in the European Journal of Operation Research (Volume 267, Issue 1, Pages 1-398) on 16 May 2018. In the paper, we formulated an ILP model and made a number of contributions. First, we proposed a general methodology that can deal with double- or single-stack railcars with arbitrary loading patterns. The patterns account for loading dependencies between the platforms on a given railcar. Second, we modeled Center of gravity (COG) restrictions, stacking rules and a number of technical loading restrictions associated with certain types of containers and/or goods. Results show that we can solve realistic size instances in reasonable time using a commercial ILP solver and we illustrate that failing to account for containers-to-cars matching as well as COG restrictions may lead to an overestimation of the available train capacity

    Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges

    Full text link
    This paper identifies research opportunities which will enable the further integration of inland waterway transport in the intermodal supply chain. Intermodal transport may be interpreted as a chain of actors who supply a transport service. Inland navigation can play a crucial role in increasing supply chain service performance. A first group of research challenges lies in the evolving relationship between transport geography and logistics activities. The next set of research challenges has the objective to encourage efficient operations in IWT: development of a system wide model for IWT, integration of operational planning systems and analysis of bundling networks. A third group of research efforts is directed towards shippers and consignees who use the intermodal transport chain to send or receive their goods: further development of models that integrate intermodal transport decisions with supply chain decisions and creation of green supply chains. A fourth cluster of research challenges concerns the problem domain of external cost calculations. Finally detailed time series data on freight transport should be collected to support these future research tracks
    corecore