17,168 research outputs found

    Business Process Management Education in Academia: Status, challenges, and Recommendations

    Get PDF
    In response to the growing proliferation of Business Process Management (BPM) in industry and the demand this creates for BPM expertise, universities across the globe are at various stages of incorporating knowledge and skills in their teaching offerings. However, there are still only a handful of institutions that offer specialized education in BPM in a systematic and in-depth manner. This article is based on a global educators’ panel discussion held at the 2009 European Conference on Information Systems in Verona, Italy. The article presents the BPM programs of five universities from Australia, Europe, Africa, and North America, describing the BPM content covered, program and course structures, and challenges and lessons learned. The article also provides a comparative content analysis of BPM education programs illustrating a heterogeneous view of BPM. The examples presented demonstrate how different courses and programs can be developed to meet the educational goals of a university department, program, or school. This article contributes insights on how best to continuously sustain and reshape BPM education to ensure it remains dynamic, responsive, and sustainable in light of the evolving and ever-changing marketplace demands for BPM expertise

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    A Business Process Management System based on a General Optimium Criterion

    Get PDF
    Business Process Management Systems (BPMS) provide a broad range of facilities to manage operational business processes. These systems should provide support for the complete Business Process Management (BPM) life-cycle (16): (re)design, configuration, execution, control, and diagnosis of processes. BPMS can be seen as successors of Workflow Management (WFM) systems. However, already in the seventies people were working on office automation systems which are comparable with today’s WFM systems. Recently, WFM vendors started to position their systems as BPMS. Our paper’s goal is a proposal for a Tasks-to-Workstations Assignment Algorithm (TWAA) for assembly lines which is a special implementation of a stochastic descent technique, in the context of BPMS, especially at the control level. Both cases, single and mixed-model, are treated. For a family of product models having the same generic structure, the mixed-model assignment problem can be formulated through an equivalent single-model problem. A general optimum criterion is considered. As the assembly line balancing, this kind of optimisation problem leads to a graph partitioning problem meeting precedence and feasibility constraints. The proposed definition for the "neighbourhood" function involves an efficient way for treating the partition and precedence constraints. Moreover, the Stochastic Descent Technique (SDT) allows an implicit treatment of the feasibility constraint. The proposed algorithm converges with probability 1 to an optimal solution.BPMS, control assembly system, stochastic optimisation techniques, TWAA, SDT

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD) Volume 7: IPAD benefits and impact

    Get PDF
    The potential benefits, impact and spinoff of IPAD technology are described. The benefits are projected from a flowtime and labor cost analysis of the design process and a study of the flowtime and labor cost savings being experienced with existing integrated systems. Benefits in terms of designer productivity, company effectiveness, and IPAD as a national resource are developed. A description is given of the potential impact of information handling as an IPAD technology, upon task and organization structure and people who use IPAD. Spinoff of IPAD technology to nonaerospace industries is discussed. The results of a personal survey made of aerospace, nonaerospace, government and university sources are given

    Research on the time optimization model algorithm of Customer Collaborative Product Innovation

    Get PDF
    Purpose: To improve the efficiency of information sharing among the innovation agents of customer collaborative product innovation and shorten the product design cycle, an improved genetic annealing algorithm of the time optimization was presented. Design/methodology/approach: Based on the analysis of the objective relationship between the design tasks, the paper takes job shop problems for machining model and proposes the improved genetic algorithm to solve the problems, which is based on the niche technology and thus a better product collaborative innovation design time schedule is got to improve the efficiency. Finally, through the collaborative innovation design of a certain type of mobile phone, the proposed model and method were verified to be correct and effective. Findings and Originality/value: An algorithm with obvious advantages in terms of searching capability and optimization efficiency of customer collaborative product innovation was proposed. According to the defects of the traditional genetic annealing algorithm, the niche genetic annealing algorithm was presented. Firstly, it avoided the effective gene deletions at the early search stage and guaranteed the diversity of solution; Secondly, adaptive double point crossover and swap mutation strategy were introduced to overcome the defects of long solving process and easily converging local minimum value due to the fixed crossover and mutation probability; Thirdly, elite reserved strategy was imported that optimal solution missing was avoided effectively and evolution speed was accelerated. Originality/value: Firstly, the improved genetic simulated annealing algorithm overcomes some defects such as effective gene easily lost in early search. It is helpful to shorten the calculation process and improve the accuracy of the convergence value. Moreover, it speeds up the evolution and ensures the reliability of the optimal solution. Meanwhile, it has obvious advantages in efficiency of information sharing among the innovation agents of customer collaborative product innovation. So, the product design cycle could be shortened.Peer Reviewe

    Research on the time optimization model algorithm of Customer Collaborative Product Innovation

    Get PDF
    Purpose: To improve the efficiency of information sharing among the innovation agents of customer collaborative product innovation and shorten the product design cycle, an improved genetic annealing algorithm of the time optimization was presented. Design/methodology/approach: Based on the analysis of the objective relationship between the design tasks, the paper takes job shop problems for machining model and proposes the improved genetic algorithm to solve the problems, which is based on the niche technology and thus a better product collaborative innovation design time schedule is got to improve the efficiency. Finally, through the collaborative innovation design of a certain type of mobile phone, the proposed model and method were verified to be correct and effective. Findings and Originality/value: An algorithm with obvious advantages in terms of searching capability and optimization efficiency of customer collaborative product innovation was proposed. According to the defects of the traditional genetic annealing algorithm, the niche genetic annealing algorithm was presented. Firstly, it avoided the effective gene deletions at the early search stage and guaranteed the diversity of solution; Secondly, adaptive double point crossover and swap mutation strategy were introduced to overcome the defects of long solving process and easily converging local minimum value due to the fixed crossover and mutation probability; Thirdly, elite reserved strategy was imported that optimal solution missing was avoided effectively and evolution speed was accelerated. Originality/value: Firstly, the improved genetic simulated annealing algorithm overcomes some defects such as effective gene easily lost in early search. It is helpful to shorten the calculation process and improve the accuracy of the convergence value. Moreover, it speeds up the evolution and ensures the reliability of the optimal solution. Meanwhile, it has obvious advantages in efficiency of information sharing among the innovation agents of customer collaborative product innovation. So, the product design cycle could be shortened.Peer Reviewe

    Mercedes-Benz USA Labor Planning Dashboard

    Get PDF
    Mercedes-Benz USA specializes in producing high-quality vehicles that exceed customer expectations at a cost-effective rate. The company utilizes a labor planning dashboard that predicts the daily use of their lines at their part distribution centers by allocating their employees to different zones in inbound, outbound, or both. The supervisors manually input all the data to designate employees to various sections within those zones. Our team was tasked with improving and proposing an updated version of the labor planning dashboard by meeting their requirements while making it effective, responsive, and user-friendly. Through trial and error, the new labor planning dashboard combats these issues by eliminating an excessive amount of manual input and creates an automated dashboard by implementing a linear program solver known as an Assignment Problem
    • 

    corecore