32,130 research outputs found

    A big bang-big crunch optimization based approach for interval type-2 fuzzy PID controller design

    Get PDF
    In this paper, we will present a big bang-big crunch optimization (BB-BC) based approach for the design of an interval type-2 fuzzy PID controller. The implemented global optimization algorithm has a low computational cost and a high convergence speed. As a consequence, the BB-BC method is a very efficient search algorithm when the number of the optimization parameters is relatively big. The optimized type-2 fuzzy controller is compared with PID and type-1 fuzzy PID controllers which were optimized with either the BB-BC optimization method or conventional design strategies. The paper will also show the effect the extra degrees of freedom provided by the antecedent interval type-2 fuzzy sets on the closed loop system performance. We will present a comparative study performed on the highly nonlinear cascaded tank process to show the superiority of the optimized interval type-2 fuzzy PID controller compared to its optimized PID, type-1 counterparts. © 2013 IEEE

    Design of Intelligent PID Controller for AVR System Using an Adaptive Neuro Fuzzy Inference System

    Get PDF
    This paper presents a hybrid approach involving signal to noise ratio (SNR) and particle swarm optimization (PSO) for design the optimal and intelligent proportional-integral-derivative (PID) controller of an automatic voltage regulator (AVR) system with uses an adaptive neuro fuzzy inference system (ANFIS). In this paper determined optimal parameters of PID controller with SNR-PSO approach for some events and use these optimal parameters of PID controller for design the intelligent PID controller for AVR system with ANFIS.  Trial and error method can be used to find a suitable design of anfis based an intelligent controller. However, there are many options including fuzzy rules, Membership Functions (MFs) and scaling factors to achieve a desired performance. An optimization algorithm facilitates this process and finds an optimal design to provide a desired performance. This paper presents a novel application of the SNRPSO approach to design an intelligent controller for AVR. SNR-PSO is a method that combines the features of PSO and SNR in order to improve the optimize operation. In order to emphasize the advantages of the proposed SNR-PSO PID controller, we also compared with the CRPSO PID controller. The proposed method was indeed more efficient and robust in improving the step response of an AVR system and numerical simulations are provided to verify the effectiveness and feasibility of PID controller of AVR based on SNRPSO algorithm.DOI:http://dx.doi.org/10.11591/ijece.v4i5.652

    Adaptive Type-2 Fuzzy Logic Control of Non-Linear Processes

    Get PDF
    The main objective of this study is to provide a valid and effective approach for the design and development of an adaptive type-2 fuzzy controller (AT2FLC), based on the analysis of the nonlinear process dynamics and the use of an ANFIS technique for the optimization of the controller. The performance of the obtained AT2FLC, characterized by a few number of rules, is higher than the performance of a traditional type-2 fuzzy controller with a larger rule base. The proposed controller is particurarly suitable for the control of processes characterized by uncertainty and time varying parameters

    African vulture optimizer algorithm based vector control induction motor drive system

    Get PDF
    This study describes a new optimization approach for three-phase induction motor speed drive to minimize the integral square error for speed controller and improve the dynamic speed performance. The new proposed algorithm, African vulture optimizer algorithm (AVOA) optimizes internal controller parameters of a fuzzy like proportional differential (PD) speed controller. The AVOA is notable for its ease of implementation, minimal number of design parameters, high convergence speed, and low computing burden. This study compares fuzzy-like PD speed controllers optimized with AVOA to adaptive fuzzy logic speed regulators, fuzzy-like PD optimized with genetic algorithm (GA), and proportional integral (PI) speed regulators optimized with AVOA to provide speed control for an induction motor drive system. The drive system is simulated using MATLAB/Simulink and laboratory prototype is implemented using DSP-DS1104 board. The results demonstrate that the suggested fuzzy-like PD speed controller optimized with AVOA, with a speed steady state error performance of 0.5% compared to the adaptive fuzzy logic speed regulator’s 0.7%, is the optimum alternative for speed controller. The results clarify the effectiveness of the controllers based on fuzzy like PD speed controller optimized with AVOA for each performance index as it provides lower overshoot, lowers rising time, and high dynamic response

    Sugeno fuzzy PID tuning, by genetic-neutral for AVR in electrical power generation

    Get PDF
    We report a novel design method for determining the optimal proportional-integral-derivative (PID) controller parameters of an automatic voltage regulator (AVR) system, using a combined genetic algorithm (GA), radial basis function neural network (RBF-NN) and Sugeno fuzzy logic approaches. GA and a RBF-NN with a Sugeno fuzzy logic are proposed to design a PID controller for an AVR system (GNFPID). The problem for obtaining the optimal AVR and PID controller parameters is formulated as an optimization problem and RBF-NN tuned by GA is applied to solve the optimization problem. Whereas, optimal PID gains obtained by the proposed RBF tuning by genetic algorithm for various operating conditions are used to develop the rule base of the Sugeno fuzzy system and design fuzzy PID controller of the AVR system to improve the system's response (~0.005 s). The proposed approach has superior features, including easy implementation, stable convergence characteristic, good computational efficiency and this algorithm effectively searches for a high-quality solution and improve the transient response of the AVR system (7E-06). Numerical simulation results demonstrate that this is faster and has much less computational cost as compared with the real-code genetic algorithm (RGA) and Sugeno fuzzy logic. The proposed method is indeed more efficient and robust in improving the step response of an AVR system

    Dynamic Stability Studies Of Generators In Power System Using Fuzzy Logic Controller Based Power System Stabilizer

    Get PDF
    Excitation systems are affected by low frequency oscillation (LFO)when they are subjected to small perturbations.Damping during the LFOis enhanced via the addition of power system stabilizer (PSS) to the excitation system.This research entails a study on fuzzy logic controller power system stabilizer (FLCPSS) for the purpose of enhancing the stability of a single machine power system.In order to accomplish the stability enhancement,two approaches were used to design fuzzy logic controller (FLC).The first approach includes the use ofgenetic algorithm (GA) to design the PSS.The second approach entails the use of particle swarm optimization (PSO) to design the PSS.The performance of these two approaches is compared with the systemand without PSS.The stabilizing signals were computed using the fuzzy membership functions depending on these variables.The simulations were tested under different operating conditions and also tested with different membership functions.The simulation is implemented using Matlab /Simulink and the results have been found to be quite good and satisfactory.Electro-mechanical oscillations were created in the event of trouble or when there was high power transfer through weak tie-line in the machines of an interrelated power network.This research presents an analysis on the change of speed (Δω), change of angle position (Δδ) and tie-line power flow (Δp).FLC which includes two areas of symmetrical systems are connected via tie-line to identify the performance of the controllers.Simulation results of the fuzzy logic based controller indicate dual inputs of rotor speed deviation and generator’s accelerating power.Two generators have been used to control the arrangement in the tie-line system.The single fuzzy logic controller (S-FLC) has been used as a primary controller and the double fuzzy logic controller(D-FLC) has been used as a secondary controller.Additionally,the system shows a comparison between the two controllers,namely the S-FLC and D-FLC which have been used to achieve the best results.Notably, the double fuzzy controller has been found to have a greater effect on the multi-machine system and it is smoother than the single fuzzy controller as it increased the damping of the speed Δω and rotorangle (degree) Δδ. Its simplicity has made it to be a good controller.In conclusion,much better response can be attained from the S-FLC) if there is careful timing of the scaling factors

    Evolution engine technology in exhaust gas recirculation for heavy-duty diesel engine

    Get PDF
    In this present year, engineers have been researching and inventing to get the optimum of less emission in every vehicle for a better environmental friendly. Diesel engines are known reusing of the exhaust gas in order to reduce the exhaust emissions such as NOx that contribute high factors in the pollution. In this paper, we have conducted a study that EGR instalment in the vehicle can be good as it helps to prevent highly amount of toxic gas formation, which NOx level can be lowered. But applying the EGR it can lead to more cooling and more space which will affect in terms of the costing. Throughout the research, fuelling in the engine affects the EGR producing less emission. Other than that, it contributes to the less of performance efficiency when vehicle load is less

    A genetic algorithm for the design of a fuzzy controller for active queue management

    Get PDF
    Active queue management (AQM) policies are those policies of router queue management that allow for the detection of network congestion, the notification of such occurrences to the hosts on the network borders, and the adoption of a suitable control policy. This paper proposes the adoption of a fuzzy proportional integral (FPI) controller as an active queue manager for Internet routers. The analytical design of the proposed FPI controller is carried out in analogy with a proportional integral (PI) controller, which recently has been proposed for AQM. A genetic algorithm is proposed for tuning of the FPI controller parameters with respect to optimal disturbance rejection. In the paper the FPI controller design metodology is described and the results of the comparison with random early detection (RED), tail drop, and PI controller are presented
    • …
    corecore