1,089 research outputs found

    Active suspension control of electric vehicle with in-wheel motors

    Get PDF
    In-wheel motor (IWM) technology has attracted increasing research interests in recent years due to the numerous advantages it offers. However, the direct attachment of IWMs to the wheels can result in an increase in the vehicle unsprung mass and a significant drop in the suspension ride comfort performance and road holding stability. Other issues such as motor bearing wear motor vibration, air-gap eccentricity and residual unbalanced radial force can adversely influence the motor vibration, passenger comfort and vehicle rollover stability. Active suspension and optimized passive suspension are possible methods deployed to improve the ride comfort and safety of electric vehicles equipped with inwheel motor. The trade-off between ride comfort and handling stability is a major challenge in active suspension design. This thesis investigates the development of novel active suspension systems for successful implementation of IWM technology in electric cars. Towards such aim, several active suspension methods based on robust H∞ control methods are developed to achieve enhanced suspension performance by overcoming the conflicting requirement between ride comfort, suspension deflection and road holding. A novel fault-tolerant H∞ controller based on friction compensation is in the presence of system parameter uncertainties, actuator faults, as well as actuator time delay and system friction is proposed. A friction observer-based Takagi-Sugeno (T-S) fuzzy H∞ controller is developed for active suspension with sprung mass variation and system friction. This method is validated experimentally on a quarter car test rig. The experimental results demonstrate the effectiveness of proposed control methods in improving vehicle ride performance and road holding capability under different road profiles. Quarter car suspension model with suspended shaft-less direct-drive motors has the potential to improve the road holding capability and ride performance. Based on the quarter car suspension with dynamic vibration absorber (DVA) model, a multi-objective parameter optimization for active suspension of IWM mounted electric vehicle based on genetic algorithm (GA) is proposed to suppress the sprung mass vibration, motor vibration, motor bearing wear as well as improving ride comfort, suspension deflection and road holding stability. Then a fault-tolerant fuzzy H∞ control design approach for active suspension of IWM driven electric vehicles in the presence of sprung mass variation, actuator faults and control input constraints is proposed. The T-S fuzzy suspension model is used to cope with the possible sprung mass variation. The output feedback control problem for active suspension system of IWM driven electric vehicles with actuator faults and time delay is further investigated. The suspended motor parameters and vehicle suspension parameters are optimized based on the particle swarm optimization. A robust output feedback H∞ controller is designed to guarantee the system’s asymptotic stability and simultaneously satisfying the performance constraints. The proposed output feedback controller reveals much better performance than previous work when different actuator thrust losses and time delay occurs. The road surface roughness is coupled with in-wheel switched reluctance motor air-gap eccentricity and the unbalanced residual vertical force. Coupling effects between road excitation and in wheel switched reluctance motor (SRM) on electric vehicle ride comfort are also analysed in this thesis. A hybrid control method including output feedback controller and SRM controller are designed to suppress SRM vibration and to prolong the SRM lifespan, while at the same time improving vehicle ride comfort. Then a state feedback H∞ controller combined with SRM controller is designed for in-wheel SRM driven electric vehicle with DVA structure to enhance vehicle and SRM performance. Simulation results demonstrate the effectiveness of DVA structure based active suspension system with proposed control method its ability to significantly improve the road holding capability and ride performance, as well as motor performance

    Preview-based techniques for vehicle suspension control: a state-of-the-art review

    Get PDF
    Abstract Automotive suspension systems are key to ride comfort and handling performance enhancement. In the last decades semi-active and active suspension configurations have been the focus of intensive automotive engineering research, and have been implemented by the industry. The recent advances in road profile measurement and estimation systems make road-preview-based suspension control a viable solution for production vehicles. Despite the availability of a significant body of papers on the topic, the literature lacks a comprehensive and up-to-date survey on the variety of proposed techniques for suspension control with road preview, and the comparison of their effectiveness. To cover the gap, this literature review deals with the research conducted over the past decades on the topic of semi-active and active suspension controllers with road preview. The main formulations are reported for each control category, and the respective features are critically analysed, together with the most relevant performance indicators. The paper also discusses the effect of the road preview time on the resulting system performance, and identifies control development trends

    Advanced robust control strategies of mechatronic suspensions for cars

    Get PDF
    Two novel mechatronic suspensions for road vehicles are studied in this thesis: the Series Active Variable Geometry Suspension (SAVGS) and the Parallel Active Link Suspension (PALS). The SAVGS and the PALS complement each other in terms of the vehicle categories they serve, which range from light high-performance vehicles (the Grand Tourer) to heavy SUV vehicles, respectively, based on the sprung mass and the passive suspension stiffness. Previous work developed various control methodologies for these types of suspension. Compared to existing active suspension solutions, both the SAVGS and the PALS are capable of low-frequency chassis attitude control and high-frequency ride comfort and road holding enhancement. In order to solve the limitation of both SAVGS and PALS robustness, mu-synthesis control methodologies are first developed for SAVGS and PALS, respectively, to account for structured uncertainties arising from changes to system parameters within realistic operating ranges. Subsequently, to guarantee robustness of both low-frequency and high-frequency vehicle dynamics for PALS, the mu-synthesis scheme is combined with proportional-integral-derivative (PID) control, employing a frequency separation paradigm. Moreover, as an alternative robustness guaranteeing scheme that captures plant nonlinearities and road unevenness as uncertainties and disturbances, a novel robust model predictive control (RMPC) based methodology is proposed for the SAVGS, motivated by the promise shown by RMPC in other industrial applications. Finally, aiming to provide further performance stability and improvements, feedforward control is developed for the PALS. Nonlinear simulations with a set of ISO driving situations are performed to evaluate the efficiency and effectiveness of the proposed control methods in this thesis.Open Acces

    Passive fault-tolerant control for vehicle active suspension system based on H2/H∞ approach

    Get PDF
    In this paper, a robust passive fault-tolerant control (RPFTC) strategy based on H2/H∞ approach and an integral sliding mode passive fault tolerant control (ISMPFTC) strategy based on H2/H∞ approach for vehicle active suspension are presented with considering model uncertainties, loss of actuator effectiveness and time-domain hard constraints of the suspension system. H∞ performance index less than γ and H2 performance index is minimized as the design objective, avoid choosing weighting coefficient. The half-car model is taken as an example, the robust passive fault-tolerant controller and the integral sliding mode passive fault tolerant control law is designed respectively. Three different fault modes are selected. And then compare and analyze the control effect of vertical acceleration of the vehicle body and pitch angular acceleration of passive suspension control, robust passive fault tolerant control and integral sliding mode passive fault tolerant control to verify the feasibility and effectiveness of passive fault tolerant control algorithm of active suspension. The studies we have performed indicated that the passive fault tolerant control strategy of the active suspension can improve the ride comfort of the suspension system

    Research on Advanced Control Strategies for Vehicle Active Seat Suspension Systems

    Get PDF
    Vehicle seat suspensions play a very important role in vibration reduction for vehicle drivers, especially for some heavy vehicles. Compared with small vehicles, these heavy vehicle drivers suffer much more from vibrations, which influence driving comfort and may cause health problems, so seat suspensions are necessary for those heavy vehicle drivers to reduce vibrations and improve driving comfort. Advanced control systems and control strategies are investigated for vehicle seat suspensions in this project. Firstly, for an active single-degree of freedom (single-DOF) seat suspension, a singular system-based approach for active vibration control of vehicle seat suspensions is proposed, where the drivers’ acceleration is augmented into the conventional seat suspension model together with seat suspension deflection and relative velocity as system states to make the suspen- sion model as a singular system. Then, an event-triggered H∞ controller is designed for an active seat suspension, where both the continuous and discrete-time event-triggered schemes are considered, respectively. The proposed control method can reduce the work- load of data transmission of the seat suspension system and work as a filter to remove the effect of noise, so it can decrease the precision requirement of the actuator, which can help to reduce the cost of the seat suspension. For complicated seat suspension systems, a singular active seat suspension system with a human body model is also established and an output-feedback event-triggered H∞ controller is designed. The accelerations of each part are considered as part of the system states, which makes the system a singular sys- tem. The seat suspension deflection, relative velocity, the accelerations of the seat frame, body torso, and head are defined as the system outputs. At last, to deal with whole-body vibration, a control system and a robust H∞ control strategy are designed for a 2-DOF seat suspension system. Two H∞ controllers are designed to reduce vertical and rotational vibrations simultaneously. All the proposed seat suspension systems and control methods are verified by simulations and some are also tested by experiments. These simulation and experimental results show their effectiveness and advantages of the proposed methods to improve the driving comfort and some can reduce the workload of data transmission

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Robust control design for vehicle active suspension systems with uncertainty

    Get PDF
    A vehicle active suspension system, in comparison with its counterparts, plays a crucial role in adequately guarantee the stability of the vehicle and improve the suspension performances. With a full understanding of the state of the art in vehicle control systems, this thesis identifies key issues in robust control design for active suspension systems with uncertainty, contributes to enhance the suspension performances via handling tradeoffs between ride comfort, road holding and suspension deflection. Priority of this thesis is to emphasize the contributions in handing actuator-related challenges and suspension model parameter uncertainty. The challenges in suspension actuators are identified as time-varying actuator delay and actuator faults. Time-varying delay and its effects in suspension actuators are targeted and analyzed. By removing the assumptions from the state of the art methods, state-feedback and output-feedback controller design methods are proposed to design less conservative state-feedback and output-feedback controller existence conditions. It overcomes the challenges brought by generalized timevarying actuator delay. On the other hand, a novel fault-tolerant controller design algorithm is developed for active suspension systems with uncertainty of actuator faults. A continuous-time homogeneous Markov process is presented for modeling the actuator failure process. The fault-tolerant H∞ controller is designed to guarantee asymptotic the stability, H∞ performance, and the constrained performance with existing possible actuator failures. It is evident that vehicle model parameter uncertainty is a vital factor affecting the performances of suspension control system. Consequently, this thesis presents two robust control solutions to overcome suspension control challenges with nonlinear constraints. A novel fuzzy control design algorithm is presented for active suspension systems with uncertainty. By using the sector nonlinearity method, Takagi-Sugeno (T-S) fuzzy systems are used to model the system. Based on Lyapunov stability theory, a new reliable fuzzy controller is designed to improve suspension performances. A novel adaptive sliding mode controller design approach is also developed for nonlinear uncertain vehicle active suspension systems. An adaptive sliding mode controller is designed to guarantee the stability and improve the suspension performances. In conclusion, novel control design algorithms are proposed for active suspension systems with uncertainty in order to guarantee and improve the suspension performance. Simulation results and comparison with the state of the art methods are provided to evaluate the effectiveness of the research contributions. The thesis shows insights into practical solutions to vehicle active suspension systems, it is expected that these algorithms will have significant potential in industrial applications and electric vehicles industry.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Control of MacPherson active suspension system using sliding mode control with composite nonlinear feedback technique

    Get PDF
    The MacPherson active suspension system is able to support the weight of vehicle and vibration isolation from road profile, and is also able to maintain the traction between tyre and road surface. It also provides both additional stability and maneuverability by performing active roll and pitch control during cornering and braking, and the most significant are ride comfort and road handling performance. However, a drawback of MacPherson model is the self-steer phenomenon in the active suspension system. The problem might be solved by controlling the actuator force and control arm of the system. The MacPherson model has a similar layout to a real vehicle active suspension system. The mathematical model of the system produces a nonlinear mathematical model with uncertainties. Therefore, the proposed control strategy must be able to cater the uncertainties in mathematical model and simultaneously provide a fast response to the system. The control strategy combines Composite Nonlinear Feedback (CNF) algorithm and Proportional Integral Sliding Mode Control (PISMC) algorithm to achieve quick response and to reduce uncertainties. Optimisation of parameters in the CNF was performed using Evolutionary Strategy (ES) algorithm for fast transient performance. Thus, the controller is called Proportional Integral Sliding Mode Control – Evolutionary Strategy – Composite Nonlinear Feedback (PISMC-ES-CNF). To validate the proposed controller, the conventional Sliding Mode Control (SMC) and CNF were utilised to control the system under various road profiles. The ISO 2631-1, 1997 was used as a reference of ride comfort level for the acceleration of sprung mass. Results show that the proposed controller, PISMC-ES-CNF achieved the best control performance under various road profiles. The results obtained also prove that the PISMC-ES-CNF managed to improve ride comfort quality and road handling quality and has also delivered better control performance in terms of transient response of acceleration of sprung mass, reducing overshoot and chattering problem compared to conventional SMC and CNF
    corecore