9,562 research outputs found

    Distortion Minimization in Gaussian Layered Broadcast Coding with Successive Refinement

    Full text link
    A transmitter without channel state information (CSI) wishes to send a delay-limited Gaussian source over a slowly fading channel. The source is coded in superimposed layers, with each layer successively refining the description in the previous one. The receiver decodes the layers that are supported by the channel realization and reconstructs the source up to a distortion. The expected distortion is minimized by optimally allocating the transmit power among the source layers. For two source layers, the allocation is optimal when power is first assigned to the higher layer up to a power ceiling that depends only on the channel fading distribution; all remaining power, if any, is allocated to the lower layer. For convex distortion cost functions with convex constraints, the minimization is formulated as a convex optimization problem. In the limit of a continuum of infinite layers, the minimum expected distortion is given by the solution to a set of linear differential equations in terms of the density of the fading distribution. As the bandwidth ratio b (channel uses per source symbol) tends to zero, the power distribution that minimizes expected distortion converges to the one that maximizes expected capacity. While expected distortion can be improved by acquiring CSI at the transmitter (CSIT) or by increasing diversity from the realization of independent fading paths, at high SNR the performance benefit from diversity exceeds that from CSIT, especially when b is large.Comment: Accepted for publication in IEEE Transactions on Information Theor

    BER Performance of IM/DD FSO System with OOK using APD Receiver

    Get PDF
    In this paper, the performance of intensity-modulated with direct detection (IM/DD) free space optical (FSO) system using the on-off keying (OOK) and avalanche photodiode (APD) receiver is observed. The gamma-gamma model is used to describe the effect of atmospheric turbulence since it provides good agreement in the wide range of atmospheric conditions. In addition, the same FSO system with equal gain combining applied at the reception is analyzed. After theoretical derivation of the expression for the bit error rate (BER), the numerical integration with previously specified relative calculation error is performed. Numerical results are presented and confirmed by Monte Carlo simulations. The effects of the FSO link and receiver parameters on the BER performance are discussed. The results illustrate that the optimal APD gain in the minimum BER sense depends considerably on the link distance, atmospheric turbulence strength and receiver temperature. In addition, the value of this optimal gain is slightly different in the case of spatial diversity application compared with single channel reception

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201

    Outage Capacity and Optimal Transmission for Dying Channels

    Full text link
    In wireless networks, communication links may be subject to random fatal impacts: for example, sensor networks under sudden power losses or cognitive radio networks with unpredictable primary user spectrum occupancy. Under such circumstances, it is critical to quantify how fast and reliably the information can be collected over attacked links. For a single point-to-point channel subject to a random attack, named as a \emph{dying channel}, we model it as a block-fading (BF) channel with a finite and random delay constraint. First, we define the outage capacity as the performance measure, followed by studying the optimal coding length KK such that the outage probability is minimized when uniform power allocation is assumed. For a given rate target and a coding length KK, we then minimize the outage probability over the power allocation vector \mv{P}_{K}, and show that this optimization problem can be cast into a convex optimization problem under some conditions. The optimal solutions for several special cases are discussed. Furthermore, we extend the single point-to-point dying channel result to the parallel multi-channel case where each sub-channel is a dying channel, and investigate the corresponding asymptotic behavior of the overall outage probability with two different attack models: the independent-attack case and the mm-dependent-attack case. It can be shown that the overall outage probability diminishes to zero for both cases as the number of sub-channels increases if the \emph{rate per unit cost} is less than a certain threshold. The outage exponents are also studied to reveal how fast the outage probability improves over the number of sub-channels.Comment: 31 pages, 9 figures, submitted to IEEE Transactions on Information Theor

    Joint Source-Channel Coding with Time-Varying Channel and Side-Information

    Full text link
    Transmission of a Gaussian source over a time-varying Gaussian channel is studied in the presence of time-varying correlated side information at the receiver. A block fading model is considered for both the channel and the side information, whose states are assumed to be known only at the receiver. The optimality of separate source and channel coding in terms of average end-to-end distortion is shown when the channel is static while the side information state follows a discrete or a continuous and quasiconcave distribution. When both the channel and side information states are time-varying, separate source and channel coding is suboptimal in general. A partially informed encoder lower bound is studied by providing the channel state information to the encoder. Several achievable transmission schemes are proposed based on uncoded transmission, separate source and channel coding, joint decoding as well as hybrid digital-analog transmission. Uncoded transmission is shown to be optimal for a class of continuous and quasiconcave side information state distributions, while the channel gain may have an arbitrary distribution. To the best of our knowledge, this is the first example in which the uncoded transmission achieves the optimal performance thanks to the time-varying nature of the states, while it is suboptimal in the static version of the same problem. Then, the optimal \emph{distortion exponent}, that quantifies the exponential decay rate of the expected distortion in the high SNR regime, is characterized for Nakagami distributed channel and side information states, and it is shown to be achieved by hybrid digital-analog and joint decoding schemes in certain cases, illustrating the suboptimality of pure digital or analog transmission in general.Comment: Submitted to IEEE Transactions on Information Theor

    Distortion Exponent in MIMO Fading Channels with Time-Varying Source Side Information

    Full text link
    Transmission of a Gaussian source over a time-varying multiple-input multiple-output (MIMO) channel is studied under strict delay constraints. Availability of a correlated side information at the receiver is assumed, whose quality, i.e., correlation with the source signal, also varies over time. A block-fading model is considered for the states of the time-varying channel and the time-varying side information; and perfect state information at the receiver is assumed, while the transmitter knows only the statistics. The high SNR performance, characterized by the \textit{distortion exponent}, is studied for this joint source-channel coding problem. An upper bound is derived and compared with lowers based on list decoding, hybrid digital-analog transmission, as well as multi-layer schemes which transmit successive refinements of the source, relying on progressive and superposed transmission with list decoding. The optimal distortion exponent is characterized for the single-input multiple-output (SIMO) and multiple-input single-output (MISO) scenarios by showing that the distortion exponent achieved by multi-layer superpositon encoding with joint decoding meets the proposed upper bound. In the MIMO scenario, the optimal distortion exponent is characterized in the low bandwidth ratio regime, and it is shown that the multi-layer superposition encoding performs very close to the upper bound in the high bandwidth expansion regime.Comment: Submitted to IEEE Transactions on Information Theor
    corecore