119 research outputs found

    On the Performance of the Relay-ARQ Networks

    Full text link
    This paper investigates the performance of relay networks in the presence of hybrid automatic repeat request (ARQ) feedback and adaptive power allocation. The throughput and the outage probability of different hybrid ARQ protocols are studied for independent and spatially-correlated fading channels. The results are obtained for the cases where there is a sum power constraint on the source and the relay or when each of the source and the relay are power-limited individually. With adaptive power allocation, the results demonstrate the efficiency of relay-ARQ techniques in different conditions.Comment: Accepted for publication in IEEE Trans. Veh. Technol. 201

    Adaptive Space-Time Coding using ARQ

    Get PDF
    We study the energy-limited outage probability of the block space-time coding (STC)-based systems utilizing automatic repeat request (ARQ) feedback and adaptive power allocation. Taking the ARQ feedback costs into account, we derive closed-form solutions for the energy-limited optimal power allocation and investigate the diversity gain of different STCARQ schemes. Also, sufficient conditions are derived for the usefulness of ARQ, in terms of energy-limited outage probability. The results show that, for a large range of feedback costs, the energy efficiency is substantially improved by the combination of ARQ and STC techniques, if optimal power allocation is utilized

    On the Performance of MIMO-ARQ Systems with Channel State Information at the Receiver

    Get PDF
    This paper investigates the performance of multiple-input-multiple-output (MIMO) systems in the presence of automatic repeat request (ARQ) feedback. We show that, for a large range of performance metrics, the data transmission efficiency of the ARQ schemes is determined by a set of parameters which are scheme-dependent and not metric-dependent. Then, the results are used to study different aspects of MIMO-ARQ such as the effect of nonlinear power amplifiers, large-scale MIMO-ARQ, adaptive power allocation and different data communication models. The results, which are valid for various forward and feedback channel models, show the efficiency of the MIMO-ARQ techniques in different conditions

    On the Required Number of Antennas in a Point-to-Point Large-but-Finite MIMO System: Outage-Limited Scenario

    Full text link
    This paper investigates the performance of the point-to-point multiple-input-multiple-output (MIMO) systems in the presence of a large but finite numbers of antennas at the transmitters and/or receivers. Considering the cases with and without hybrid automatic repeat request (HARQ) feedback, we determine the minimum numbers of the transmit/receive antennas which are required to satisfy different outage probability constraints. Our results are obtained for different fading conditions and the effect of the power amplifiers efficiency on the performance of the MIMO-HARQ systems is analyzed. Moreover, we derive closed-form expressions for the asymptotic performance of the MIMO-HARQ systems when the number of antennas increases. Our analytical and numerical results show that different outage requirements can be satisfied with relatively few transmit/receive antennas.Comment: Under review in IEEE Transactions on Communication

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    Optimisation of relay placement in wireless butterfly networks

    Get PDF
    As a typical model of multicast network, wireless butterfly networks (WBNs) have been studied for modelling the scenario when two source nodes wish to convey data to two destination nodes via an intermediary node namely relay node. In the context of wireless communications, when receiving two data packets from the two source nodes, the relay node can employ either physical-layer network coding or analogue network coding on the combined packet prior to forwarding to the two destination nodes. Evaluating the energy efficiency of these combination approaches, energy-delay trade-off (EDT) is worth to be investigated and the relay placement should be taken into account in the practical network design. This chapter will first investigate the EDT of network coding in the WBNs. Based on the derived EDT, algorithms that optimize the relay position will be developed to either minimize the transmission delay or minimize the energy consumption subject to constraints on power allocation and location of nodes. Furthermore, considering an extended model of the WBN, the relay placement will be studied for a general wireless multicast network with multiple source, relay and destination nodes

    Optimal Power Allocation for Hybrid ARQ with Chase Combining in i.i.d. Rayleigh Fading Channels

    Full text link
    • …
    corecore