855 research outputs found

    An optimal order interior penalty discontinuous Galerkin discretization of the compressible Navier-Stokes equations

    Get PDF
    In this article we propose a new symmetric version of the interior penalty discontinuous Galerkin finite element method for the numerical approximation of the compressible Navier-Stokes equations. Here, particular emphasis is devoted to the construction of an optimal numerical method for the evaluation of certain target functionals of practical interest, such as the lift and drag coefficients of a body immersed in a viscous fluid. With this in mind, the key ingredients in the construction of the method include: (i) An adjoint consistent imposition of the boundary conditions; (ii) An adjoint consistent reformulation of the underlying target functional of practical interest; (iii) Design of appropriate interior--penalty stabilization terms. Numerical experiments presented within this article clearly indicate the optimality of the proposed method when the error is measured in terms of both the L2-norm, as well as for certain target functionals. Computational comparisons with other discontinuous Galerkin schemes proposed in the literature, including the second scheme of Bassi and Rebay, the standard SIPG method outlined in [Hartmann,Houston-2006], and an NIPG variant of the new scheme will be undertaken

    A matrix-free high-order discontinuous Galerkin compressible Navier-Stokes solver: A performance comparison of compressible and incompressible formulations for turbulent incompressible flows

    Full text link
    Both compressible and incompressible Navier-Stokes solvers can be used and are used to solve incompressible turbulent flow problems. In the compressible case, the Mach number is then considered as a solver parameter that is set to a small value, Mā‰ˆ0.1\mathrm{M}\approx 0.1, in order to mimic incompressible flows. This strategy is widely used for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. The present work raises the question regarding the computational efficiency of compressible DG solvers as compared to a genuinely incompressible formulation. Our contributions to the state-of-the-art are twofold: Firstly, we present a high-performance discontinuous Galerkin solver for the compressible Navier-Stokes equations based on a highly efficient matrix-free implementation that targets modern cache-based multicore architectures. The performance results presented in this work focus on the node-level performance and our results suggest that there is great potential for further performance improvements for current state-of-the-art discontinuous Galerkin implementations of the compressible Navier-Stokes equations. Secondly, this compressible Navier-Stokes solver is put into perspective by comparing it to an incompressible DG solver that uses the same matrix-free implementation. We discuss algorithmic differences between both solution strategies and present an in-depth numerical investigation of the performance. The considered benchmark test cases are the three-dimensional Taylor-Green vortex problem as a representative of transitional flows and the turbulent channel flow problem as a representative of wall-bounded turbulent flows

    Error estimation and adjoint-based adaptation in aerodynamics

    Get PDF
    In this article we give an overview of recent developments in error estimation and in residual-based and goal-oriented (adjoint-based) adaptation for Discontinuous Galerkin discretizations of sub- and supersonic viscous compressible flows. We also give an outlook on the planned continuation of this research in the EU project ADIGMA

    An Optimal Order Interior Penalty Discontinuous Galerkin Discretization of the Compressible Navier-Stokes Equations

    Get PDF
    In this article we propose a new symmetric version of the interior penalty discontinuous Galerkin finite element method for the numerical approximation of the compressible Navier-Stokes equations. Here, particular emphasis is devoted to the construction of an optimal numerical method for the evaluation of certain target functionals of practical interest, such as the lift and drag coefficients of a body immersed in a viscous fluid. With this in mind, the key ingredients in the construction of the method include: (i) An adjoint consistent imposition of the boundary conditions; (ii) An adjoint consistent reformulation of the underlying target functional of practical interest; (iii) Design of appropriate interior-penalty stabilization terms. Numerical experiments presented within this article clearly indicate the optimality of the proposed method when the error is measured in terms of both the L_2-norm, as well as for certain target functionals. Computational comparisons with other discontinuous Galerkin schemes proposed in the literature, including the second scheme of Bassi & Rebay, cf. [11], the standard SIPG method outlined in [25], and an NIPG variant of the new scheme will be undertaken

    A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow

    Full text link
    We present an efficient discontinuous Galerkin scheme for simulation of the incompressible Navier-Stokes equations including laminar and turbulent flow. We consider a semi-explicit high-order velocity-correction method for time integration as well as nodal equal-order discretizations for velocity and pressure. The non-linear convective term is treated explicitly while a linear system is solved for the pressure Poisson equation and the viscous term. The key feature of our solver is a consistent penalty term reducing the local divergence error in order to overcome recently reported instabilities in spatially under-resolved high-Reynolds-number flows as well as small time steps. This penalty method is similar to the grad-div stabilization widely used in continuous finite elements. We further review and compare our method to several other techniques recently proposed in literature to stabilize the method for such flow configurations. The solver is specifically designed for large-scale computations through matrix-free linear solvers including efficient preconditioning strategies and tensor-product elements, which have allowed us to scale this code up to 34.4 billion degrees of freedom and 147,456 CPU cores. We validate our code and demonstrate optimal convergence rates with laminar flows present in a vortex problem and flow past a cylinder and show applicability of our solver to direct numerical simulation as well as implicit large-eddy simulation of turbulent channel flow at ReĻ„=180Re_{\tau}=180 as well as 590590.Comment: 28 pages, in preparation for submission to Journal of Computational Physic

    Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows

    Full text link
    We present a robust and accurate discretization approach for incompressible turbulent flows based on high-order discontinuous Galerkin methods. The DG discretization of the incompressible Navier-Stokes equations uses the local Lax-Friedrichs flux for the convective term, the symmetric interior penalty method for the viscous term, and central fluxes for the velocity-pressure coupling terms. Stability of the discretization approach for under-resolved, turbulent flow problems is realized by a purely numerical stabilization approach. Consistent penalty terms that enforce the incompressibility constraint as well as inter-element continuity of the velocity field in a weak sense render the numerical method a robust discretization scheme in the under-resolved regime. The penalty parameters are derived by means of dimensional analysis using penalty factors of order 1. Applying these penalty terms in a postprocessing step leads to an efficient solution algorithm for turbulent flows. The proposed approach is applicable independently of the solution strategy used to solve the incompressible Navier-Stokes equations, i.e., it can be used for both projection-type solution methods as well as monolithic solution approaches. Since our approach is based on consistent penalty terms, it is by definition generic and provides optimal rates of convergence when applied to laminar flow problems. Robustness and accuracy are verified for the Orr-Sommerfeld stability problem, the Taylor-Green vortex problem, and turbulent channel flow. Moreover, the accuracy of high-order discretizations as compared to low-order discretizations is investigated for these flow problems. A comparison to state-of-the-art computational approaches for large-eddy simulation indicates that the proposed methods are highly attractive components for turbulent flow solvers

    Symmetric Interior Penalty DG Methods for the Compressible Navier-Stokes Equations I: Method Formulation

    Get PDF
    In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented
    • ā€¦
    corecore