14,972 research outputs found

    Some combinational optimization problems on radio network communication and machine scheduling

    Get PDF
    The combinatorial optimization problems coming from two areas are studied in this dissertation: network communication and machine scheduling. In the network communication area, the complexity of distributed broadcasting and distributed gossiping is studied in the setting of random networks. Two different models are considered: one is random geometric networks, the main model used to study properties of sensor and ad-hoc networks, where ri points are randomly placed in a unit square and two points are connected by an edge if they are at most a certain fixed distance r from each other. The other model is the so-called line-of-sight networks, a new network model introduced recently by Frieze et al. (SODA\u2707). The nodes in this model are randomly placed (with probability p) on an n x n grid and a node can communicate with all the nodes that are in at most a certain fixed distance r and which are in the same row or column. It can be shown that in many scenarios of both models, the random structure of these networks makes it possible to perform distributed gossiping in asymptotically optimal time 0(D), where D is the diameter of the network. The simulation results show that most algorithms especially the randomized algorithm works very fast in practice. In the scheduling area, the first problem is online scheduling a set of equal processing time tasks with precedence constraints so as to minimize the makespan. It can be shown that Hu \u27s algorithm yields an asymptotic competitive ratio of 3/2 for intree precedence constraints and an asymptotic competitive ratio of 1 for outtree precedences, and Coffinan-Graham algorithm yields an asymptotic competitive ratio of 1 for arbitrary precedence constraints and two machines.The second scheduling problem is the integrated production and delivery scheduling with disjoint windows. In this problem, each job is associated with a time window, and a profit. A job must be finished within its time window to get the profit. The objective is to pick a set ofjobs and schedule them to get the maximum total profit. For a single machine and unit profit, an optimal algorithm is proposed. For a single machine and arbitrary profit, a fully polynomial time approximation scheme(FPTAS) is proposed. These algorithms can be extended to multiple machines with approximation ratio less than e/(e - 1). The third scheduling problem studied in this dissertation is the preemptive scheduling algorithms with nested and inclusive processing set restrictions. The objective is to minimize the makespan of the schedule. It can be shown that there is no optimal online algorithm even for the case of inclusive processing set. Then a linear time optimal algorithm is given for the case of nested processing set, where all jobs are available for processing at time t = 0. A more complicated algorithm with running time 0(n log ri) is given that produces not only optimal but also maximal schedules. When jobs have different release times, an optimal algorithm is given for the nested case and a faster optimal algorithm is given for the inclusive processing set case

    Greed Works -- Online Algorithms For Unrelated Machine Stochastic Scheduling

    Get PDF
    This paper establishes performance guarantees for online algorithms that schedule stochastic, nonpreemptive jobs on unrelated machines to minimize the expected total weighted completion time. Prior work on unrelated machine scheduling with stochastic jobs was restricted to the offline case, and required linear or convex programming relaxations for the assignment of jobs to machines. The algorithms introduced in this paper are purely combinatorial. The performance bounds are of the same order of magnitude as those of earlier work, and depend linearly on an upper bound on the squared coefficient of variation of the jobs' processing times. Specifically for deterministic processing times, without and with release times, the competitive ratios are 4 and 7.216, respectively. As to the technical contribution, the paper shows how dual fitting techniques can be used for stochastic and nonpreemptive scheduling problems.Comment: Preliminary version appeared in IPCO 201

    New Results on Online Resource Minimization

    Full text link
    We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, we consider scheduling jobs with agreeable deadlines. We provide the first constant ratio competitive algorithm for the non-preemptive setting, which is of particular interest with regard to the known strong lower bound of n for the general problem. For the preemptive setting, we show that the natural algorithm LLF achieves a constant ratio for agreeable jobs, while for general jobs it has a lower bound of Omega(n^(1/3)). We also give an O(log n)-competitive algorithm for the general preemptive problem, which improves upon the known O(p_max/p_min)-competitive algorithm. Our algorithm maintains a dynamic partition of the job set into loose and tight jobs and schedules each (temporal) subset individually on separate sets of machines. The key is a characterization of how the decrease in the relative laxity of jobs influences the optimum number of machines. To achieve this we derive a compact expression of the optimum value, which might be of independent interest. We complement the general algorithmic result by showing lower bounds that rule out that other known algorithms may yield a similar performance guarantee

    Mechanism design for decentralized online machine scheduling

    Get PDF
    Traditional optimization models assume a central decision maker who optimizes a global system performance measure. However, problem data is often distributed among several agents, and agents take autonomous decisions. This gives incentives for strategic behavior of agents, possibly leading to sub-optimal system performance. Furthermore, in dynamic environments, machines are locally dispersed and administratively independent. Examples are found both in business and engineering applications. We investigate such issues for a parallel machine scheduling model where jobs arrive online over time. Instead of centrally assigning jobs to machines, each machine implements a local sequencing rule and jobs decide for machines themselves. In this context, we introduce the concept of a myopic best response equilibrium, a concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is a polynomial time, online mechanism that |assuming rational behavior of jobs| results in an equilibrium schedule that is 3.281-competitive with respect to the maximal social welfare. This is only lightly worse than state-of-the-art algorithms with central coordination

    Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model

    Full text link
    We consider online scheduling on multiple machines for jobs arriving one-by-one with the objective of minimizing the makespan. For any number of identical parallel or uniformly related machines, we provide a competitive-ratio approximation scheme that computes an online algorithm whose competitive ratio is arbitrarily close to the best possible competitive ratio. We also determine this value up to any desired accuracy. This is the first application of competitive-ratio approximation schemes in the online-list model. The result proves the applicability of the concept in different online models. We expect that it fosters further research on other online problems

    Non-Preemptive Scheduling on Machines with Setup Times

    Full text link
    Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in n, m and k and computes a solution with an approximation factor that can be made arbitrarily close to 3/2.Comment: A conference version of this paper has been accepted for publication in the proceedings of the 14th Algorithms and Data Structures Symposium (WADS
    • …
    corecore