12,066 research outputs found

    Optimal Lower Bounds for Anonymous Scheduling Mechanisms

    Get PDF
    We consider the problem of designing truthful mechanisms on m unrelated machines, to minimize some optimization goal. Nisan and Ronen [Nisan, N., A. Ronen. 2001. Algorithmic mechanism design. Games Econom. Behav. 35 166–196] consider the specific goal of makespan minimization, and show a lower bound of 2, and an upper bound of m. This large gap inspired many attempts that yielded positive results for several special cases, but very partial success for the general case: the lower bound was slightly increased to 2.61 by Christodoulou et al. [Christodoulou, G., E. Koutsoupias, A. Kovács. 2010. Mechanism design for fractional scheduling on unrelated machines. ACM Trans. Algorithms (TALG) 6(2) 1–18] and Koutsoupias and Vidali [Koutsoupias, E., A. Vidali. 2007. A lower bound of 1+phi for truthful scheduling mechanisms. Proc. 32nd Internat. Sympos. Math. Foundations Comput. Sci. (MFCS)], while the best upper bound remains unchanged. In this paper we show the optimal lower bound on truthful anonymous mechanisms: no such mechanism can guarantee an approximation ratio better than m. Moreover, our proof yields similar optimal bounds for two other optimization goals: the sum of completion times and the lp norm of the schedule.United States-Israel Binational Science FoundationIsrael. Ministry of ScienceGoogle Inter-University Center for Electronic Markets and Auction

    Smooth Inequalities and Equilibrium Inefficiency in Scheduling Games

    Full text link
    We study coordination mechanisms for Scheduling Games (with unrelated machines). In these games, each job represents a player, who needs to choose a machine for its execution, and intends to complete earliest possible. Our goal is to design scheduling policies that always admit a pure Nash equilibrium and guarantee a small price of anarchy for the l_k-norm social cost --- the objective balances overall quality of service and fairness. We consider policies with different amount of knowledge about jobs: non-clairvoyant, strongly-local and local. The analysis relies on the smooth argument together with adequate inequalities, called smooth inequalities. With this unified framework, we are able to prove the following results. First, we study the inefficiency in l_k-norm social costs of a strongly-local policy SPT and a non-clairvoyant policy EQUI. We show that the price of anarchy of policy SPT is O(k). We also prove a lower bound of Omega(k/log k) for all deterministic, non-preemptive, strongly-local and non-waiting policies (non-waiting policies produce schedules without idle times). These results ensure that SPT is close to optimal with respect to the class of l_k-norm social costs. Moreover, we prove that the non-clairvoyant policy EQUI has price of anarchy O(2^k). Second, we consider the makespan (l_infty-norm) social cost by making connection within the l_k-norm functions. We revisit some local policies and provide simpler, unified proofs from the framework's point of view. With the highlight of the approach, we derive a local policy Balance. This policy guarantees a price of anarchy of O(log m), which makes it the currently best known policy among the anonymous local policies that always admit a pure Nash equilibrium.Comment: 25 pages, 1 figur

    Average-case Approximation Ratio of Scheduling without Payments

    Full text link
    Apart from the principles and methodologies inherited from Economics and Game Theory, the studies in Algorithmic Mechanism Design typically employ the worst-case analysis and approximation schemes of Theoretical Computer Science. For instance, the approximation ratio, which is the canonical measure of evaluating how well an incentive-compatible mechanism approximately optimizes the objective, is defined in the worst-case sense. It compares the performance of the optimal mechanism against the performance of a truthful mechanism, for all possible inputs. In this paper, we take the average-case analysis approach, and tackle one of the primary motivating problems in Algorithmic Mechanism Design -- the scheduling problem [Nisan and Ronen 1999]. One version of this problem which includes a verification component is studied by [Koutsoupias 2014]. It was shown that the problem has a tight approximation ratio bound of (n+1)/2 for the single-task setting, where n is the number of machines. We show, however, when the costs of the machines to executing the task follow any independent and identical distribution, the average-case approximation ratio of the mechanism given in [Koutsoupias 2014] is upper bounded by a constant. This positive result asymptotically separates the average-case ratio from the worst-case ratio, and indicates that the optimal mechanism for the problem actually works well on average, although in the worst-case the expected cost of the mechanism is Theta(n) times that of the optimal cost

    Pricing for Online Resource Allocation: Intervals and Paths

    Full text link
    We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of items; buyers' values for the bundles are drawn from known distributions. This problem is closely related to the so-called prophet-inequality of Krengel and Sucheston and its extensions in recent literature. Motivated by applications to cloud economics, we consider two kinds of buyer preferences. In the first, items correspond to different units of time at which a resource is available; the items are arranged in a total order and buyers desire intervals of items. The second corresponds to bandwidth allocation over a tree network; the items are edges in the network and buyers desire paths. Because buyers' preferences have complementarities in the settings we consider, recent constant-factor approximations via item prices do not apply, and indeed strong negative results are known. We develop static, anonymous bundle pricing mechanisms. For the interval preferences setting, we show that static, anonymous bundle pricings achieve a sublogarithmic competitive ratio, which is optimal (within constant factors) over the class of all online allocation algorithms, truthful or not. For the path preferences setting, we obtain a nearly-tight logarithmic competitive ratio. Both of these results exhibit an exponential improvement over item pricings for these settings. Our results extend to settings where the seller has multiple copies of each item, with the competitive ratio decreasing linearly with supply. Such a gradual tradeoff between supply and the competitive ratio for welfare was previously known only for the single item prophet inequality
    • …
    corecore