1,065 research outputs found

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management

    Efficient operation of recharging infrastructure for the accommodation of electric vehicles: a demand driven approach

    Get PDF
    Large deployment and adoption of electric vehicles in the forthcoming years can have significant environmental impact, like mitigation of climate change and reduction of traffic-induced air pollutants. At the same time, it can strain power network operations, demanding effective load management strategies to deal with induced charging demand. One of the biggest challenges is the complexity that electric vehicle (EV) recharging adds to the power system and the inability of the existing grid to cope with the extra burden. Charging coordination should provide individual EV drivers with their requested energy amount and at the same time, it should optimise the allocation of charging events in order to avoid disruptions at the electricity distribution level. This problem could be solved with the introduction of an intermediate agent, known as the aggregator or the charging service provider (CSP). Considering out-of-home charging infrastructure, an additional role for the CSP would be to maximise revenue for parking operators. This thesis contributes to the wider literature of electro-mobility and its effects on power networks with the introduction of a choice-based revenue management method. This approach explicitly treats charging demand since it allows the integration of a decentralised control method with a discrete choice model that captures the preferences of EV drivers. The sensitivities to the joint charging/parking attributes that characterise the demand side have been estimated with EV-PLACE, an online administered stated preference survey. The choice-modelling framework assesses simultaneously out-of-home charging behaviour with scheduling and parking decisions. Also, survey participants are presented with objective probabilities for fluctuations in future prices so that their response to dynamic pricing is investigated. Empirical estimates provide insights into the value that individuals place to the various attributes of the services that are offered by the CSP. The optimisation of operations for recharging infrastructure is evaluated with SOCSim, a micro-simulation framework that is based on activity patterns of London residents. Sensitivity analyses are performed to examine the structural properties of the model and its benefits compared to an uncontrolled scenario are highlighted. The application proposed in this research is practice-ready and recommendations are given to CSPs for its full-scale implementation.Open Acces

    Towards Smarter Electric Vehicle Charging with Low Carbon Smart Grids: Pricing and Control.

    Get PDF
    Environmental and political directions indicate transition to a decarbonized transportation system is necessary as it is one of the most pollutant sectors regarding greenhouse gas emissions. Research in Demand Side Management suggests that its tools are the most cost-effective option for improving the performance of the grid without incurring into high infrastructure investments, hence reducing the payback for start-ups in the sector. This Thesis proposes solutions to tackle 5 objectives around this area of research: 1-2 are related to developing a demand response pricing and EV smart charging strategies, 3-4 are related to developing a multi-objective charging scheme in order to ensure fairness and reduction of CO2eq emissions, and 5 is related to testing parameters of EV charging to understand future improvements and limitations in the proposed models. Chapter 3, that tackles objectives 1-2, proposes a data-driven optimisation algorithm with pricing and control modules that communicate with each other to achieve a successful integration with the grid by charging at the right price and expected time. The results show customers can be positively engaged with pricing signals while providing support to the grid. Chapter 4, which tackles objectives 3-4, proposes a multi-objective EV charging formulation that include perspectives of EV users, a carbon regulator and a charging station operator. The multi-objective formulation is solved with a genetic algorithm in order to find the fairest and the greenest solution. Results which are evaluated using different scenarios show different weights to each objective function can differ based on the charging location and EV charging availability. Finally, Chapter 5 which tackles objective 5, shows a sensitivity analysis where improvements in revenues, reduction of carbon emissions and bidding capacity depend on the evaluation of EV users’ parameters, and the charging station control and sizing

    Decentralized Energy Management Concept for Urban Charging Hubs with Multiple V2G Aggregators

    Get PDF
    This work introduces a decentralized management concept for the urban charging hubs (UCHs) where electric vehicles (EVs) can access multiple charger clusters, each controlled by an aggregator. The given day ahead schedules (DASs) and peak power limits (PPLs) of the aggregators providing grid-to-vehicle (G2V) and vehicle-to-grid (V2G) services can constrain the energy supply. A suitable energy management concept is required to prevent the impact of supply limitations on EV users. In the proposed approach, an electromobility operator (EMO) acting as an authorized entity, allocates incoming EVs into the charger clusters in the UCH. The EMO executes a smart routing (SR) algorithm that jointly optimizes the cluster allocations and charging schedules, minimizing the charging cost for the given dynamic price signals produced by the aggregators. For real-time charging control (RTC) of the charging units, each aggregator solves an optimization problem with periodically updated parameters given by the DAS/PPLs and charging commitments. This work demonstrates the effectiveness of the proposed concept through comparisons against benchmark strategies without SR and RTC. The results highlight that the proposed concept reduces the deviations from the DASs and the violations of PPLs while significantly decreasing unfulfilled charging demand and unscheduled discharge from EV batteries.Decentralized Energy Management Concept for Urban Charging Hubs with Multiple V2G AggregatorsacceptedVersio

    Demand Side Management of Electric Vehicles in Smart Grids: A survey on strategies, challenges, modeling, and optimization

    Get PDF
    The shift of transportation technology from internal combustion engine (ICE) based vehicles to electricvehicles (EVs) in recent times due to their lower emissions, fuel costs, and greater efficiency hasbrought EV technology to the forefront of the electric power distribution systems due to theirability to interact with the grid through vehicle-to-grid (V2G) infrastructure. The greater adoptionof EVs presents an ideal use-case scenario of EVs acting as power dispatch, storage, and ancillaryservice-providing units. This EV aspect can be utilized more in the current smart grid (SG) scenarioby incorporating demand-side management (DSM) through EV integration. The integration of EVswith DSM techniques is hurdled with various issues and challenges addressed throughout thisliterature review. The various research conducted on EV-DSM programs has been surveyed. This reviewarticle focuses on the issues, solutions, and challenges, with suggestions on modeling the charginginfrastructure to suit DSM applications, and optimization aspects of EV-DSM are addressed separatelyto enhance the EV-DSM operation. Gaps in current research and possible research directions have beendiscussed extensively to present a comprehensive insight into the current status of DSM programsemployed with EV integration. This extensive review of EV-DSM will facilitate all the researchersto initiate research for superior and efficient energy management and EV scheduling strategies andmitigate the issues faced by system uncertainty modeling, variations, and constraints

    Optimal electric vehicle scheduling : A co-optimized system and customer perspective

    Get PDF
    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivizing the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle --Abstract, page iv
    corecore