39,704 research outputs found

    Optimized Adaptive Streaming Representations based on System Dynamics

    Get PDF
    Adaptive streaming addresses the increasing and heterogenous demand of multimedia content over the Internet by offering several encoded versions for each video sequence. Each version (or representation) has a different resolution and bit rate, aimed at a specific set of users, like TV or mobile phone clients. While most existing works on adaptive streaming deal with effective playout-control strategies at the client side, we take in this paper a providers' perspective and propose solutions to improve user satisfaction by optimizing the encoding rates of the video sequences. We formulate an integer linear program that maximizes users' average satisfaction, taking into account the network dynamics, the video content information, and the user population characteristics. The solution of the optimization is a set of encoding parameters that permit to create different streams to robustly satisfy users' requests over time. We simulate multiple adaptive streaming sessions characterized by realistic network connections models, where the proposed solution outperforms commonly used vendor recommendations, in terms of user satisfaction but also in terms of fairness and outage probability. The simulation results further show that video content information as well as network constraints and users' statistics play a crucial role in selecting proper encoding parameters to provide fairness a mong users and to reduce network resource usage. We finally propose a few practical guidelines that can be used to choose the encoding parameters based on the user base characteristics, the network capacity and the type of video content

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201
    • …
    corecore