273 research outputs found

    Performance evaluation of the deconvolution techniques used in analyzing multicomponent transient signals

    Get PDF
    Deconvolution is an important preprocessing procedure often needed in the spectral analysis of transient exponentially decaying signals. Three deconvolution techniques are studied and applied to the problem of estimating the parameters of multiexponential signals observed in noise. Both the conventional and optimal compensated inverse filtering approaches produce data which are further analyzed by SVD-based autoregressive moving average (ARMA) modeling techniques. The third procedure is based on homomorphic filtering and it is implemented by fast Fourier transform (FFT) technique. A comparative study of the performance of the above deconvolution techniques in analyzing multicomponent exponential signals with varied signal-to-noise ratio (SNR) is examined in this paper. The results of simulation studies show that the homomorphic deconvolution technique is most computationally efficient, however, it produces inaccurate estimates of signal parameters even at high SNR, especially with closely related exponents. Simulation results show that the optimal compensation deconvolution technique is indeed a generalized form of the conventional inverse filtering and has the potential of producing accurate estimates of signal parameters from a substantial wide range of SNR data

    Blind deconvolution of medical ultrasound images: parametric inverse filtering approach

    Get PDF
    ©2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TIP.2007.910179The problem of reconstruction of ultrasound images by means of blind deconvolution has long been recognized as one of the central problems in medical ultrasound imaging. In this paper, this problem is addressed via proposing a blind deconvolution method which is innovative in several ways. In particular, the method is based on parametric inverse filtering, whose parameters are optimized using two-stage processing. At the first stage, some partial information on the point spread function is recovered. Subsequently, this information is used to explicitly constrain the spectral shape of the inverse filter. From this perspective, the proposed methodology can be viewed as a ldquohybridizationrdquo of two standard strategies in blind deconvolution, which are based on either concurrent or successive estimation of the point spread function and the image of interest. Moreover, evidence is provided that the ldquohybridrdquo approach can outperform the standard ones in a number of important practical cases. Additionally, the present study introduces a different approach to parameterizing the inverse filter. Specifically, we propose to model the inverse transfer function as a member of a principal shift-invariant subspace. It is shown that such a parameterization results in considerably more stable reconstructions as compared to standard parameterization methods. Finally, it is shown how the inverse filters designed in this way can be used to deconvolve the images in a nonblind manner so as to further improve their quality. The usefulness and practicability of all the introduced innovations are proven in a series of both in silico and in vivo experiments. Finally, it is shown that the proposed deconvolution algorithms are capable of improving the resolution of ultrasound images by factors of 2.24 or 6.52 (as judged by the autocorrelation criterion) depending on the type of regularization method used

    Blind deconvolution techniques and applications

    Get PDF

    Wave propagation through soils in centrifuge testing.

    No full text
    International audienceWave propagation phenomena in soils can be experimentally simulated using centrifuge scale models. An original excitation device (drop-ball arrangement) is proposed to generate short wave trains. Wave reflections on model boundaries are taken into account and removed by homomorphic filtering. Propagation is investigated through dispersion laws. For drop-ball experiments, spherical wave field analysis assuming linear viscoelasticity leads to a complete analytical description of wave propagation. Damping phenomena are examined and evaluated using this description

    Channel response and target detection in shallow water

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1996.Includes bibliographical references (p. 83-84).by Wenhua Li.M.S

    Matlab-Based Algorithm for Real Time Analysis of Multiexponential Transient Signals

    Get PDF
    Multiexponential transient signals are particularly important due to their occurrences in many natural phenomena and human applications. For instance, it is important in the study of nuclear magnetic resonance (NMR) in medical diagnosis (Cohn-Sfetcu et al., 1975)), relaxation kinetics of cooperative conformational changes in biopolymers (Provencher, 1976), solving system identification problems in control and communication engineering (Prost and Guotte, 1982), fluorescence decay of proteins (Karrakchou et al., 1992), fluorescence decay analysis (Lakowicz, 1999). Several research work have been reported on the analysis of multicomponent transient signals following the pioneer work of Prony in 1795 (Prony, 1975) and Gardner et al. in 1959 (Gardner, 1979). Detailed review of several techniques for multicomponent transient signals’ analysis was recently reported in (Jibia, 2010)

    Development of a Post-Processing Algorithm for Accurate Human Skull Profile Extraction via Ultrasonic Phased Arrays

    Get PDF
    Ultrasound Imaging has been favored by clinicians for its safety, affordability, accessibility, and speed compared to other imaging modalities. However, the trade-offs to these benefits are a relatively lower image quality and interpretability, which can be addressed by, for example, post-processing methods. One particularly difficult imaging case is associated with the presence of a barrier, such as a human skull, with significantly different acoustical properties than the brain tissue as the target medium. Some methods were proposed in the literature to account for this structure if the skull\u27s geometry is known. Measuring the skull\u27s geometry is therefore an important task that requires attention. In this work, a new edge detection method for accurate human skull profile extraction via post-processing of ultrasonic A-Scans is introduced. This method, referred to as the Selective Echo Extraction algorithm, SEE, processes each A-Scan separately and determines the outermost and innermost boundaries of the skull by means of adaptive filtering. The method can also be used to determine the average attenuation coefficient of the skull. When applied to simulated B-Mode images of the skull profile, promising results were obtained. The profiles obtained from the proposed process in simulations were found to be within 0.15 λ ± 0.11 λ or 0.09 ± 0.07 mm from the actual profiles. Experiments were also performed to test SEE on skull mimicking phantoms with major acoustical properties similar to those of the actual human skull. With experimental data, the profiles obtained with the proposed process were within 0.32 λ ± 0.25 λ or 0.19 ± 0.15 mm from the actual profile

    Speech Acoustic Modelling using Raw Source and Filter Components

    Get PDF

    Ultrasonic Monitoring of Reaction Bonding Silicon Nitride

    Full text link
    corecore