350 research outputs found

    Digital repetitive control under varying frequency conditions

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialThe tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control working under varying frequency conditions. These contributions can be organized as follows: One approach that overcomes the problem of working under time varying frequency conditions is the adaptation of the controller sampling period, nevertheless, the system framework changes from Linear Time Invariant to Linear Time-Varying and the closed-loop stability can be compromised. This work presents two different methodologies aimed at analysing the system stability under these conditions. The first one uses a Linear Matrix Inequality (LMI) gridding approach which provides necessary conditions to accomplish a sufficient condition for the closed-loop Bounded Input Bounded Output stability of the system. The second one applies robust control techniques in order to analyse the stability and yields sufficient stability conditions. Both methodologies yield a frequency variation interval for which the system stability can be assured. Although several approaches exist for the stability analysis of general time-varying sampling period controllers few of them allow an integrated controller design which assures closed-loop stability under such conditions. In this thesis two design methodologies are presented, which assure stability of the repetitive control system working under varying sampling period for a given frequency variation interval: a mu-synthesis technique and a pre-compensation strategy. On a second branch, High Order Repetitive Control (HORC) is mainly used to improve the repetitive control performance robustness under disturbance/reference signals with varying or uncertain frequency. Unlike standard repetitive control, the HORC involves a weighted sum of several signal periods. With a proper selection of the associated weights, this high order function offers a characteristic frequency response in which the high gain peaks located at harmonic frequencies are extended to a wider region around the harmonics. Furthermore, the use of an odd-harmonic internal model will make the system more appropriate for applications where signals have only odd-harmonic components, as in power electronics systems. Thus an Odd-harmonic High Order Repetitive Controller suitable for applications involving odd-harmonic type signals with varying/uncertain frequency is presented. The open loop stability of internal models used in HORC and the one presented here is analysed. Additionally, as a consequence of this analysis, an Anti-Windup (AW) scheme for repetitive control is proposed. This AW proposal is based on the idea of having a small steady state tracking error and fast recovery once the system goes out of saturation. The experimental validation of these proposals has been performed in two different applications: the Roto-magnet plant and the active power filter application. The Roto-magnet plant is an experimental didactic plant used as a tool for analysing and understanding the nature of the periodic disturbances, as well as to study the different control techniques used to tackle this problem. This plant has been adopted as experimental test bench for rotational machines. On the other hand, shunt active power filters have been widely used as a way to overcome power quality problems caused by nonlinear and reactive loads. These power electronics devices are designed with the goal of obtaining a power factor close to 1 and achieving current harmonics and reactive power compensation.Award-winningPostprint (published version

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version

    Automatic exposure control in network video cameras

    Get PDF
    The overall objective of this study is to describe, analyse and suggest improvements on existing automatic exposure control systems in selected network video cameras. Since an image sensor has a limited dynamic range compared to a real scene, it is necessary to automatically control the exposure level and thus adapt to the amount of light in the scene. This can be done by adjusting parameters such as exposure time, gain and variable aperture in an automatic control loop. The two cameras in this study run different implementations of such a control loop and the topic of this study is to test their performance, to review their implementation of automatic exposure control, to comment on their implementation from a theoretical stand point, and to suggest improvements. The most focus has been correction of integrator function or adding of integrator functionality to the controllers to remove steady state errors. Integrator windup was solved for two cases. Some other minor bugs giving unwanted behavior such ass finite word length in the integrators. Also improving gain scheduling and correction of clamping of signals are suggested. A suggestion for smear control improvement is to use feed forward the changes when changes are needed to exposure, this enables to control faster and still limit the impact on the picture quality

    Synchronous Reluctance Motor Performance Improvement Using MTPA Control Strategy and Five-Level Inverter Topology

    Get PDF
    An improved vector control method is presented in this study to enhance synchronous reluctance motor (SynRM) performance. The maximum torque per ampere (MTPA) technique has demonstrated good dynamic properties since the torque control is closely tied to the current control. The selection of the control approach is primarily influenced by how the reference current values will be defined. Additionally, a five-level neutral-point-clamped (NPC) inverter replaces the traditional two-level inverter. Only eight voltage vectors can be produced by a two-level inverter, whereas one hundred twenty-five voltage vectors can be generated by a five-level inverter. The goal is to produce an output voltage vector that closely resembles the reference voltage vector in order to ensure a quick response on the one hand and enhance dynamic performance on the other. An exact comparison of the suggested vector control strategy's properties is made once it has been simulated in MATLAB/Simulink. The acquired findings are satisfactory and high performance is attained in terms of response time, torque ripple reduction, and current waveform improvement

    Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Advanced control of grid-connected multilevel power electronic rectifiers

    Get PDF
    Multilevel power electronic converters have been gaining attention due to their ability to supply high amounts of power and to handle high voltage levels. In this dissertation, grid connected AC-DC rectifier application is investigated with different topologies and control scheme. At first, neutral point clamped (NPC) rectifier is employed to transfer power from the grid to the load. The NPC rectifier has two capacitors in order to build multilevel output voltage. However, it causes voltage unbalancing problem. Therefore, the new method has been proposed to regulate each capacitor voltage at the same voltage level. Experimental results show that it is effective to balance capacitor voltages of the NPC and it can improve total harmonic distortion (THD) of the grid current as a result. Furthermore, 7 voltage levels can be achieved by using hybrid multilevel rectifier which consists of an NPC and cascaded H-bridges (CHB). Because the hybrid multilevel rectifier has total 8 capacitors which are completely discharged at first, large inrush currents from the grid might cause hazards. Therefore, the paper develops a pre-charge routine for building it up to steady state operation in which unity power factor control (PFC) and load voltage control are achieved. Finally, multiple reference frame theory (MRF) is used to improve THD of the grid currents when the hybrid multilevel rectifier is connected with distorted grid voltage source. After calculating 5th harmonic of the grid current in real time, the voltage reference for the hybrid multilevel rectifier will be compensated in a feedback loop. Experimental results show validity in improving THD of the grid currents. --Abstract, page iv

    Disturbance Feedback Control for Industrial Systems:Practical Design with Robustness

    Get PDF
    • …
    corecore