59 research outputs found

    Packing Plane Perfect Matchings into a Point Set

    Full text link
    Given a set PP of nn points in the plane, where nn is even, we consider the following question: How many plane perfect matchings can be packed into PP? We prove that at least log2n2\lceil\log_2{n}\rceil-2 plane perfect matchings can be packed into any point set PP. For some special configurations of point sets, we give the exact answer. We also consider some extensions of this problem

    Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman Algorithm

    Get PDF

    Hypergraph matchings and designs

    Full text link
    We survey some aspects of the perfect matching problem in hypergraphs, with particular emphasis on structural characterisation of the existence problem in dense hypergraphs and the existence of designs.Comment: 19 pages, for the 2018 IC

    The hamburger theorem

    Full text link
    We generalize the ham sandwich theorem to d+1d+1 measures in Rd\mathbb{R}^d as follows. Let μ1,μ2,,μd+1\mu_1,\mu_2, \dots, \mu_{d+1} be absolutely continuous finite Borel measures on Rd\mathbb{R}^d. Let ωi=μi(Rd)\omega_i=\mu_i(\mathbb{R}^d) for i[d+1]i\in [d+1], ω=min{ωi;i[d+1]}\omega=\min\{\omega_i; i\in [d+1]\} and assume that j=1d+1ωj=1\sum_{j=1}^{d+1} \omega_j=1. Assume that ωi1/d\omega_i \le 1/d for every i[d+1]i\in[d+1]. Then there exists a hyperplane hh such that each open halfspace HH defined by hh satisfies μi(H)(j=1d+1μj(H))/d\mu_i(H) \le (\sum_{j=1}^{d+1} \mu_j(H))/d for every i[d+1]i \in [d+1] and j=1d+1μj(H)min(1/2,1dω)1/(d+1)\sum_{j=1}^{d+1} \mu_j(H) \ge \min(1/2, 1-d\omega) \ge 1/(d+1). As a consequence we obtain that every (d+1)(d+1)-colored set of ndnd points in Rd\mathbb{R}^d such that no color is used for more than nn points can be partitioned into nn disjoint rainbow (d1)(d-1)-dimensional simplices.Comment: 11 pages, 2 figures; a new proof of Theorem 8, extended concluding remark

    Dependent k-Set Packing on Polynomoids

    Get PDF
    Specialized hereditary systems, e.g., matroids, are known to have many applications in algorithm design. We define a new notion called d-polynomoid as a hereditary system (E, ? ? 2^E) so that every two maximal sets in ? have less than d elements in common. We study the problem that, given a d-polynomoid (E, ?), asks if the ground set E contains ? disjoint k-subsets that are not in ?, and obtain a complexity trichotomy result for all pairs of k ? 1 and d ? 0. Our algorithmic result yields a sufficient and necessary condition that decides whether each hypergraph in some classes of r-uniform hypergraphs has a perfect matching, which has a number of algorithmic applications

    A Geometric Theory for Hypergraph Matching

    Full text link
    We develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: 'space barriers' from convex geometry, and 'divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, we introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. We determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, our main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, we apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in 3-graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemer\'edi Theorem. Here we prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical we defer it to a subsequent paper.Comment: Accepted for publication in Memoirs of the American Mathematical Society. 101 pages. v2: minor changes including some additional diagrams and passages of expository tex

    Planar Bichromatic Bottleneck Spanning Trees

    Get PDF
    Given a set P of n red and blue points in the plane, a planar bichromatic spanning tree of P is a geometric spanning tree of P, such that each edge connects between a red and a blue point, and no two edges intersect. In the bottleneck planar bichromatic spanning tree problem, the goal is to find a planar bichromatic spanning tree T, such that the length of the longest edge in T is minimized. In this paper, we show that this problem is NP-hard for points in general position. Our main contribution is a polynomial-time (8?2)-approximation algorithm, by showing that any bichromatic spanning tree of bottleneck ? can be converted to a planar bichromatic spanning tree of bottleneck at most 8?2 ?

    Multipartite hypergraphs achieving equality in Ryser's conjecture

    Get PDF
    A famous conjecture of Ryser is that in an rr-partite hypergraph the covering number is at most r1r-1 times the matching number. If true, this is known to be sharp for rr for which there exists a projective plane of order r1r-1. We show that the conjecture, if true, is also sharp for the smallest previously open value, namely r=7r=7. For r{6,7}r\in\{6,7\}, we find the minimal number f(r)f(r) of edges in an intersecting rr-partite hypergraph that has covering number at least r1r-1. We find that f(r)f(r) is achieved only by linear hypergraphs for r5r\le5, but that this is not the case for r{6,7}r\in\{6,7\}. We also improve the general lower bound on f(r)f(r), showing that f(r)3.052r+O(1)f(r)\ge 3.052r+O(1). We show that a stronger form of Ryser's conjecture that was used to prove the r=3r=3 case fails for all r>3r>3. We also prove a fractional version of the following stronger form of Ryser's conjecture: in an rr-partite hypergraph there exists a set SS of size at most r1r-1, contained either in one side of the hypergraph or in an edge, whose removal reduces the matching number by 1.Comment: Minor revisions after referee feedbac
    corecore