20,003 research outputs found

    Stronger ILPs for the Graph Genus Problem

    Get PDF
    The minimum genus of a graph is an important question in graph theory and a key ingredient in several graph algorithms. However, its computation is NP-hard and turns out to be hard even in practice. Only recently, the first non-trivial approach - based on SAT and ILP (integer linear programming) models - has been presented, but it is unable to successfully tackle graphs of genus larger than 1 in practice. Herein, we show how to improve the ILP formulation. The crucial ingredients are two-fold. First, we show that instead of modeling rotation schemes explicitly, it suffices to optimize over partitions of the (bidirected) arc set A of the graph. Second, we exploit the cycle structure of the graph, explicitly mapping short closed walks on A to faces in the embedding. Besides the theoretical advantages of our models, we show their practical strength by a thorough experimental evaluation. Contrary to the previous approach, we are able to quickly solve many instances of genus > 1

    Local algorithms in (weakly) coloured graphs

    Full text link
    A local algorithm is a distributed algorithm that completes after a constant number of synchronous communication rounds. We present local approximation algorithms for the minimum dominating set problem and the maximum matching problem in 2-coloured and weakly 2-coloured graphs. In a weakly 2-coloured graph, both problems admit a local algorithm with the approximation factor (Δ+1)/2(\Delta+1)/2, where Δ\Delta is the maximum degree of the graph. We also give a matching lower bound proving that there is no local algorithm with a better approximation factor for either of these problems. Furthermore, we show that the stronger assumption of a 2-colouring does not help in the case of the dominating set problem, but there is a local approximation scheme for the maximum matching problem in 2-coloured graphs.Comment: 14 pages, 3 figure

    A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

    Full text link
    Given an undirected graph with edge costs and node weights, the minimum bisection problem asks for a partition of the nodes into two parts of equal weight such that the sum of edge costs between the parts is minimized. We give a polynomial time bicriteria approximation scheme for bisection on planar graphs. Specifically, let WW be the total weight of all nodes in a planar graph GG. For any constant ε>0\varepsilon > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most W/2+εW/2 + \varepsilon and the total cost of edges crossing the partition is at most (1+ε)(1+\varepsilon) times the total cost of the optimal bisection. The previously best known approximation for planar minimum bisection, even with unit node weights, was O(logn)O(\log n). Our algorithm actually solves a more general problem where the input may include a target weight for the smaller side of the bipartition.Comment: To appear in STOC 201

    Exact bounds for distributed graph colouring

    Full text link
    We prove exact bounds on the time complexity of distributed graph colouring. If we are given a directed path that is properly coloured with nn colours, by prior work it is known that we can find a proper 3-colouring in 12log(n)±O(1)\frac{1}{2} \log^*(n) \pm O(1) communication rounds. We close the gap between upper and lower bounds: we show that for infinitely many nn the time complexity is precisely 12logn\frac{1}{2} \log^* n communication rounds.Comment: 16 pages, 3 figure
    corecore