1,548 research outputs found

    Environmental and Statistical Performance Mapping Model for Underwater Acoustic Detection Systems

    Get PDF
    This manuscript describes a methodology to combine environmental models, acoustic signal predictions, statistical detection models and operations research to form a framework for calculating and communicating performance. This methodology has been applied to undersea target detection systems and has come to be known as Performance Surface modeling. The term Performance Surface refers to a geo-spatial representation of the predicted performance of one or more sensors constrained by all-source forecasts for a geophysical area of operations. Recent improvements in ocean, atmospheric and underwater acoustic models, along with advances in parallel computing provide an opportunity to forecast the effects of a complex and dynamic acoustic environment on undersea target detection system performance. This manuscript describes a new process that calculates performance in a straight-forward sonar-equation manner utilizing spatially complex and temporally dynamic environmental models. This performance model is constructed by joining environmental acoustic signal predictions with a detection model to form a probabilistic prediction which is then combined with probabilities of target location to produce conditional, joint and marginal probabilities. These joint and marginal probabilities become the scalar estimates of system performance. This manuscript contains two invited articles recently accepted for publication. The first article describes the Performance Surface model development with sections on current applications and future extensions to a more stochastic model. The second article is written from the operational perspective of a Naval commanding officer with co-authors from the active force. Performance Surface tools have been demonstrated at the Naval Oceanographic Office (NAVOCEANO) and the Naval Oceanographic Anti-Submarine Warfare (ASW) Center (NOAC) in support of recent naval exercises. The model also has recently been a major representation for the performance layer of the Naval Meteorological and Oceanographic Command (NAVMETOCCOM) in its Battlespace on Demand strategy for supporting the Fleet with oceanographic products

    Environmental and Statistical Performance Mapping Model for Underwater Acoustic Detection Systems

    Get PDF
    This manuscript describes a methodology to combine environmental models, acoustic signal predictions, statistical detection models and operations research to form a framework for calculating and communicating performance. This methodology has been applied to undersea target detection systems and has come to be known as Performance Surface modeling. The term Performance Surface refers to a geo-spatial representation of the predicted performance of one or more sensors constrained by all-source forecasts for a geophysical area of operations. Recent improvements in ocean, atmospheric and underwater acoustic models, along with advances in parallel computing provide an opportunity to forecast the effects of a complex and dynamic acoustic environment on undersea target detection system performance. This manuscript describes a new process that calculates performance in a straight-forward sonar-equation manner utilizing spatially complex and temporally dynamic environmental models. This performance model is constructed by joining environmental acoustic signal predictions with a detection model to form a probabilistic prediction which is then combined with probabilities of target location to produce conditional, joint and marginal probabilities. These joint and marginal probabilities become the scalar estimates of system performance. This manuscript contains two invited articles recently accepted for publication. The first article describes the Performance Surface model development with sections on current applications and future extensions to a more stochastic model. The second article is written from the operational perspective of a Naval commanding officer with co-authors from the active force. Performance Surface tools have been demonstrated at the Naval Oceanographic Office (NAVOCEANO) and the Naval Oceanographic Anti-Submarine Warfare (ASW) Center (NOAC) in support of recent naval exercises. The model also has recently been a major representation for the performance layer of the Naval Meteorological and Oceanographic Command (NAVMETOCCOM) in its Battlespace on Demand strategy for supporting the Fleet with oceanographic products

    Sustainable government policy as silver bullet to sustainable business incubation performance In Nigeria

    Get PDF
    Business incubation has variously been described as a support programme that assist the early-stage entrepreneurs to develop and stay on their own. Furthermore, business incubation programme has been acknowledged as an economic development tool most countries globally adopted. The aim of this study is to examine the contribution of government policy on the relationship between the critical success factors (CSFs) and incubator performance in Nigeria. The questionnaire method of data collection was used to gather 113 usable questionnaires from incubatees in Nigeria’s business incubators. Structural Equation Modeling (SEM) was performed to determine the result using the Partial Least Square (PLS) Software. Government policy as a moderator did not show a significant moderation relationship between the CSF and incubator performance

    Modeling Ketamine Effects on Synaptic Plasticity During the Mismatch Negativity

    Get PDF
    This paper presents a model-based investigation of mechanisms underlying the reduction of mismatch negativity (MMN) amplitudes under the NMDA-receptor antagonist ketamine. We applied dynamic causal modeling and Bayesian model selection to data from a recent ketamine study of the roving MMN paradigm, using a cross-over, double-blind, placebo-controlled design. Our modeling was guided by a predictive coding framework that unifies contemporary "adaptation” and "model adjustment” MMN theories. Comparing a series of dynamic causal models that allowed for different expressions of neuronal adaptation and synaptic plasticity, we obtained 3 major results: 1) We replicated previous results that both adaptation and short-term plasticity are necessary to explain MMN generation per se; 2) we found significant ketamine effects on synaptic plasticity, but not adaptation, and a selective ketamine effect on the forward connection from left primary auditory cortex to superior temporal gyrus; 3) this model-based estimate of ketamine effects on synaptic plasticity correlated significantly with ratings of ketamine-induced impairments in cognition and control. Our modeling approach thus suggests a concrete mechanism for ketamine effects on MMN that correlates with drug-induced psychopathology. More generally, this demonstrates the potential of modeling for inferring on synaptic physiology, and its pharmacological modulation, from electroencephalography dat

    Assessing the Impact of Different Ocean Analysis Schemes on Oceanic and Underwater Acoustic Predictions

    Get PDF
    Assimilating oceanic observations into prediction systems is an advantageous approach for real-time ocean environment characterization. However, its benefits to underwater acoustic predictions are not trivial due to the nonlinearity and sensitivity of underwater acoustic propagation to small-scale oceanic features. In order to assess the potential of oceanic data assimilation, integrated ocean-acoustic Observing System Simulation Experiments are conducted. Synthetic altimetry and in situ data were assimilated through a variational oceanographic data assimilation system. The predicted sound speed fields are then ingested in a range-dependent acoustic model for transmission loss (TL) predictions. The predicted TLs are analyzed for the purpose of (i) evaluating the contributions of different sources to the uncertainties of oceanic and acoustic forecasts and (ii) comparing the impact of different oceanic analysis schemes on the TL prediction accuracy. Using ensemble member clustering techniques, the contributions of boundary conditions, ocean parameterizations, and geoacoustic characterization to acoustic prediction uncertainties are addressed. Subsequently, the impact of three-dimensional variational (3DVAR), 4DVAR, and hybrid ensemble-3DVAR data assimilation on acoustic TL prediction at two signal frequencies (75 and 2,500 Hz) and different ranges (30 and 60 km) are compared. 3DVAR significantly improves the predicted TL accuracy compared to the control run. Promisingly, 4DVAR and hybrid data assimilation further improve the TL forecasts, the hybrid scheme achieving the highest skill scores for all cases, while being the most computationally intensive scheme. The optimal scheme choice thus depends on requirements on the accuracy and computational constraints. These findings foster developments of coupled data assimilation for operational underwater acoustic propagation

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 165, March 1977

    Get PDF
    This bibliography lists 198 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1977

    Research and Technology

    Get PDF
    Langley Research Center is engaged in the basic an applied research necessary for the advancement of aeronautics and space flight, generating advanced concepts for the accomplishment of related national goals, and provding research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Highlights of major accomplishments and applications are presented

    A review of high impact weather for aviation meteorology

    Get PDF
    This review paper summarizes current knowledge available for aviation operations related to meteorology and provides suggestions for necessary improvements in the measurement and prediction of weather-related parameters, new physical methods for numerical weather predictions (NWP), and next-generation integrated systems. Severe weather can disrupt aviation operations on the ground or in-flight. The most important parameters related to aviation meteorology are wind and turbulence, fog visibility, aerosol/ash loading, ceiling, rain and snow amount and rates, icing, ice microphysical parameters, convection and precipitation intensity, microbursts, hail, and lightning. Measurements of these parameters are functions of sensor response times and measurement thresholds in extreme weather conditions. In addition to these, airport environments can also play an important role leading to intensification of extreme weather conditions or high impact weather events, e.g., anthropogenic ice fog. To observe meteorological parameters, new remote sensing platforms, namely wind LIDAR, sodars, radars, and geostationary satellites, and in situ instruments at the surface and in the atmosphere, as well as aircraft and Unmanned Aerial Vehicles mounted sensors, are becoming more common. At smaller time and space scales (e.g., < 1 km), meteorological forecasts from NWP models need to be continuously improved for accurate physical parameterizations. Aviation weather forecasts also need to be developed to provide detailed information that represents both deterministic and statistical approaches. In this review, we present available resources and issues for aviation meteorology and evaluate them for required improvements related to measurements, nowcasting, forecasting, and climate change, and emphasize future challenges

    Aeronautical engineering: A special bibliography with indexes, supplement 80

    Get PDF
    This bibliography lists 277 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1977

    Aeronautics Technology Possibilities for 2000: Report of a workshop

    Get PDF
    The potential of aeronautical research and technology (R&T) development, which could provide the basis for facility planning and long range guidance of R&T programs and could establish justification for support of aeronautical research and technology was studied. The projections served specific purposes: (1) to provide a base for research and future facilities needed to support the projected technologies, and development advanced vehicles; (2) to provide insight on the possible state of the art in aeronautical technology by the year 2000 for civil and military planners of air vehicles and systems. Topics discussed include: aerodynamics; propulsion; structures; materials; guidance, navigation and control; computer and information technology; human factors; and systems integration
    corecore