181 research outputs found

    Improving the quantification of land cover pressure on stream ecological status at the riparian scale using High Spatial Resolution Imagery

    Get PDF
    The aim of this paper is to demonstrate the interest of High Spatial Resolution Imagery (HSRI) and the limits of coarse land cover data such as CORINE Land Cover (CLC), for the accurate characterization of land cover structure along river corridors and of its functional links with freshwater ecological status on a large scale. For this purpose, we compared several spatial indicators built from two land cover maps of the Herault river corridor (southern France): one derived from the CLC database, the other derived from HSRI. The HSRI-derived map was obtained using a supervised object-based classification of multi-source remotely-sensed images (SPOT 5 XS-10 m and aerial photography-0.5 m) and presents an overall accuracy of 70 %. The comparison between the two sets of spatial indicators highlights that the HSRI-derived map allows more accuracy in the quantification of land cover pressures near the stream: the spatial structure of the river landscape is finely resolved and the main attributes of riparian vegetation can be quantified in a reliable way. The next challenge will consist in developing an operational methodology using HSRI for large-scale mapping of river corridor land cover,, for spatial indicator computation and for the development of related pressure/impact models, in order to improve the prediction of stream ecological status

    Soil Erosion

    Get PDF
    In the first section of this book on soil erosion, an introduction to the soil erosion problem is presented. In the first part of the second section, rainfall erosivity is estimated on the basis of pluviograph records and cumulative rainfall depths by means of empirical equations and machine learning methods. In the second part of the second section, a physically-based, hydrodynamic, finite element model is described for the computation of surface runoff and channel flows. In the first part of the third section, the soil erosion risk is assessed in two different basins. In the second part of the third section, the soil erosion risk management in a basin is evaluated, and the delimitation of the areas requiring priority planning is achieved

    Analysis of the environmental licensing procedure for coastal environments in Colombia : a geomorphological perspective from the concept of susceptibility to the effect of human interventions

    Get PDF
    Importantes falencias en los procedimientos de licenciamiento ambiental en Colombia se relacionan directamente con la degradación generalizada de sus franjas costeras y zonas litorales. Estas áreas se encuentran afectadas severamente por intervenciones humanas que interfieren con los procesos naturales y modifican sustancialmente sus balances sedimentarios, contextos geomorfológicos y condiciones físico-bióticas. Entre muchos otros ejemplos, se destacan: a) La erosión generalizada y la destrucción de playas y dunas en el delta del Río Magdalena, asociadas a la construcción de los tajamares de Bocas de Ceniza; b) La modificación drástica de la hidrodinámica de los litorales de los departamentos del Atlántico y Magdalena por proyectos de infraestructura lineal; c) la híper-salinización y pérdida de más de 30,000 hectáreas de manglar en el complejo lagunar de la Ciénaga Grande de Santa Marta (CGSM) debido a la expansión de la frontera agrícola e infraestructura lineal d) el retroceso acelerado de playas y acantilados en el Caribe sur, debido a actividades como la deforestación, extracción de materiales de playa y construcción desordenada y caótica de cerca de 500 obras de defensa costera; y e) La salinización de más de 10,000 hectáreas de pantanos de agua dulce en la Bahía de Cispatá, como consecuencia de la formación inducida del nuevo delta de Tinajones. En este sentido, la ubicación de infraestructura en terrenos geológica y geomorfológicamente inestables, afectados por fenómenos como la subsidencia costera y el diapirismo de lodos, plantea amenazas y riesgos naturales de primer orden. Este es un panorama palpable en el presente y futuro de zonas urbanas y rurales de ciudades como Barranquilla, Cartagena, Arboletes y Necoclí, todas ellas con desarrollos futuros (industria, puertos, urbanísticos) de la mayor importancia. Los costos ambientales asociados a intervenciones como las mencionadas son incalculables, sin contar la existencia de otros numerosos ejemplos, que evidencian entre otros factores un insuficiente reconocimiento a la geomofología en la evaluación, seguimiento y control de las intervenciones humanas en el entorno marino-costero. Estas funciones de manejo ambiental en Colombia se surten por medio del procedimiento de licenciamiento ambiental, que están a cargo de autoridades de orden nacional y regional según la Ley 99 de 1993. En el contexto anterior, se plantean las siguientes preguntas de investigación: ¿Qué elementos del licenciamiento ambiental de intervenciones en ambientes costeros pueden mejorarse, dando prioridad a los contextos geomorfológicos particulares de las zonas de intervención? ¿Cómo ha evolucionado el sistema regulatorio en Colombia con respecto a las intervenciones humanas sobre los ambientes costeros? 20 ¿Qué mejoras técnicas se pueden hacer al marco regulatorio colombiano para guiar la evaluación, seguimiento y control de intervenciones humanas desde el enfoque geomorfológico de susceptibilidad? Este trabajo examina el marco regulatorio ambiental que actualmente rige en las zonas costeras colombianas, a través de dos niveles geográficos. En un primer nivel macro se caracterizan y analizan las intervenciones humanas en el litoral Caribe continental, región que representa una muestra significativa del contexto colombiano por sus mayores niveles de ocupación humana y consecuentes perturbaciones antropogénicas. En un segundo nivel, de mayor detalle, se define e ilustra el enfoque conceptual y metodológico que resulta de esta investigación, con la demostración en una de las unidades ambientales costeras definidas por el decreto 1120 de 2013 para el manejo costero integrado. Para responder a los interrogantes planteados, el Capítulo I introduce brevemente la evolución geomorfológica histórica de los litorales colombianos desde finales del siglo XVIII. En este “abrebocas” se evidencia la compleja geología y geomorfología de las costas Caribe y Pacífico de Colombia, en las cuales islas-barrera deltaicas de bajo relieve y manglares contrastan con relieves rocosos escarpados, acantilados y amplias plataformas costeras emergidas y sumergidas. La evolución histórica de los litorales colombianos involucra cambios en la línea de costa estimados en cientos de metros, a tasas máximas de 40 metros al año (Punta Rey, Arboletes, Bahía de Tumaco), y pérdidas y ganancias de terrenos del orden de decenas de kilómetros cuadrados (Ciénaga de Mallorquín, Isla Cascajo, Delta de Tinajones-Bahía de Cispatá, Golfo de Urabá, Delta de los ríos San Juan y Patía). Estos casos reflejan variaciones drásticas en los balances de sedimentos del litoral, muchos de ellos provocados o influenciados por acciones humanas, como infraestructura para la navegación, modificación de cauces y obras de protección costera. El Capítulo II identifica la perspectiva geomorfológica en el licenciamiento ambiental de intervenciones costeras en Colombia, a partir de su comparación con los marcos regulatorios de Italia, España y Cuba. Las entrevistas y revisiones documentales destacaron 59 intervenciones asociadas con usos y actividades humanas en las zonas costeras, cuya obligatoriedad para el licenciamiento varía entre países. Los procesos geomorfológicos naturales también fueron analizados dentro de los criterios técnicos incluidos en las directrices oficiales para estudios ambientales. Se concluye que, a pesar de la aceptación mundial de las evaluaciones de impacto ambiental como procedimiento de licenciamiento, su aplicación es aún muy diversa y limitada en cuanto a la pertinencia de los procesos geomorfológicos costeros. Por consiguiente, se identifican siete buenas prácticas para la evaluación y el control de los impactos antropogénicos en la zona costera y se introduce un nuevo enfoque, orientado en procesos, para los procedimientos de licenciamiento ambiental. 21 En el Capítulo III se hace un inventario y se caracterizan las intervenciones humanas sobre la costa continental del Caribe colombiano, para establecer una línea base regional. A partir de imágenes de Google Earth, se ubicaron un total de 2,742 obras y actividades, que representan 29 tipos diferentes de intervenciones humanas. Este inventario se complementó con una evaluación del impacto general de cada intervención, en función de cuatro atributos de sus efectos geomorfológicos, a saber, extensión, intensidad, reversibilidad y persistencia. Los tres tipos de intervenciones humana más comunes (asentamientos de baja densidad, espolones y asentamientos de lujo con muelle) fueron también los más impactantes. Sin embargo, algunas intervenciones (por ejemplo, asentamientos de alta densidad o infraestructura vial) tuvieron valores de impacto ambiental más altos que otras más frecuentes. A partir de este análisis exhaustivo del Caribe colombiano, en el Capítulo IV se evalúa el marco regulatorio ambiental nacional aplicable a las áreas costeras. Se evidencia que el procedimiento de licenciamiento en Colombia actualmente solo regula cuatro de los diez tipos de intervenciones con mayor efecto en las zonas costeras colombianas. También se resalta que el número de obras y actividades cubiertas en cada nueva reforma legislativa disminuyó constantemente con el tiempo. Adicionalmente, se extrajeron tres implicaciones políticas para la planificación costera y oceánica, relacionadas con: a) la diversidad geográfica de las zonas costeras tropicales; b) la necesidad de instrumentos de capacidad de carga territorial; y c) la falta de articulación de los instrumentos de planificación territorial. Las conclusiones identifican una brecha importante entre la toma de decisiones técnicas y políticas en el marco regulatorio ambiental de Colombia, lo que subraya la necesidad de diseñar nuevos métodos para evaluar la amplitud y la dimensión de la dinámica geomorfológica en un contexto de manejo ambiental. Por consiguiente, los capítulos anteriores resaltan tres deficiencias importantes en Colombia, con respecto al manejo ambiental de intervenciones humanas en zonas costeras: 1) la ausencia de una estrategia para determinar intervenciones que requieren un procedimiento de licencia ambiental (screening); 2) una deficiente definición del alcance de los estudios ambientales a través de requisitos de información pertinentes (scoping); y 3) la desarticulación de los instrumentos de gestión ambiental, como la planificación territorial y las licencias ambientales. Todos estos elementos ratifican que el marco regulatorio ambiental en Colombia ha sido insuficiente hasta la fecha para manejar el impacto antropogénico en los ambientes costeros, debido a que no se tiene en cuenta la susceptibilidad natural al efecto de las intervenciones humanas. En este trabajo se define susceptibilidad como la predisposición de una unidad ambiental (sistema socio-natural) para experimentar cambios o afectaciones debido a la introducción de una intervención humana. Con el fin de proponer mejoras al sistema ambiental colombiano, el Capítulo V plantea un nuevo modelo conceptual y metodológico para guiar la evaluación, el seguimiento y el control de los 22 impactos humanos desde una perspectiva geomorfológica. Este producto novedoso se ha denominado Susceptibilidad a las Intervenciones Humanas con fines de Licenciamiento Ambiental (SHIELP en inglés). La arquitectura de este modelo tiene tres componentes, que son particulares para un tipo de entorno, a saber, procesos geomorfológicos, configuraciones geomorfológicas e intervenciones humanas potencialmente impactantes. Cada uno de estos componentes se traduce en una variable por medio de calificaciones de expertos y el cálculo de lógica difusa. Por lo tanto, el sistema experto-difuso SHIELP cuantifica la susceptibilidad de una geoforma distintiva a los efectos de un tipo característico de intervención humana, a través de la perturbación estimada en cada proceso geomorfológico que configura el tipo de ambiente en estudio. Como demostración, este capítulo también documenta el diseño del sistema experto-difuso para ambientes costeros, esbozado en talleres de investigación con miembros del Instituto de Investigaciones Marinas y Costeras “José Benito Vives de Andréis”- INVEMAR. El rol que cumple este instituto como asesor oficial de las autoridades ambientales en cuestiones de evaluación de impacto, demuestran su pertinencia para soportar la base de conocimiento experto del modelo. Como resultado, el modelo SHIELP se aplicó con los parámetros establecidos para los entornos costeros, derivando en una base de datos de valores de susceptibilidad para 4,524 interacciones (configuración litoral frente a intervención). La aplicabilidad real de este ejercicio corresponde a la traducción de esta base de datos en un criterio técnico para mejorar el marco regulatorio colombiano. Por un lado, cinco rangos de susceptibilidad se vincularon a cinco instrumentos diferenciados, dos de los cuales articulan el licenciamiento ambiental con planes territoriales, mientras que los otros diferencian el tipo licenciamiento pertinente según las propiedades de ubicación de la intervención (screening). Por otro lado, los instrumentos diferenciados también se combinaron con cuatro grados de requisitos de información para la definición del alcance en los estudios ambientales respectivos (scoping). De esta manera, el valor de susceptibilidad de una intervención dada en una configuración determinada (interacción) se ajusta a un rango percentilico que establece la competencia territorial (regional o nacional) para su control ambiental, así como un instrumento de licencia específico con requisitos de información diferenciados para la definición de la línea base ambiental. Finalmente, la operación del modelo SHIELP se demostró con un estudio de caso: la unidad ambiental costera Rio Magdalena - complejo Canal del Dique - sistema lagunar Ciénaga Grande de Santa Marta. La información geográfica de esta unidad costera regional se interpretó de acuerdo con los parámetros definidos en el modelo SHIELP para ambientes costeros. Se delimitaron 154 polígonos en el área de estudio, de acuerdo con las 40 configuraciones litorales identificadas. Como resultado, 13 mapas cartográficos representan esta área, con los niveles de susceptibilidad atribuidos a cada configuración para las 52 intervenciones potencialmente impactantes. A fin de ilustrar la aplicabilidad del modelo, se presentan cuatro escenarios para discriminar las 23 intervenciones por instrumento de manejo ambiental (screening) y para definir los requerimientos de información sobre procesos geomorfológicos (scoping). De esta manera el modelo SHIELP especifica el instrumento de licenciamiento ambiental para las intervenciones humanas y el alcance correspondiente del estudio técnico requerido, dadas las características de su interacción con la configuración gemorfológica. Las Conclusiones Generales documentan reflexiones y recomendaciones al Sistema Nacional Ambiental colombiano (SINA) para implementar los resultados de esta investigación. Además, este trabajo abre una perspectiva amplia para futuras investigaciones en el enfoque de la susceptibilidad al efecto de las intervenciones humanas. El modelo SHIELP para entornos costeros se puede replicar en diversas geografías para articular progresivamente una base de datos nacional de susceptibilidad costera. Asimismo, el esquema metodológico presentado puede aplicarse en diferentes tipos de entornos, distintos de la zona costera. La ampliación de este enfoque de susceptibilidad geomorfológica sobre la variedad de ecosistemas tropicales, establecería el camino para una transición exitosa desde la actual concepción antropocéntrica y orientada a la fragmentación, hacia una aproximación del manejo basado en los ecosistemas.Important flaws in the environmental licensing procedures in Colombia are directly related to the generalized degradation of its coastal fringes and littoral zones. These areas are severely affected by human interventions that interfere with natural processes and severely modify their sedimentary balances, geomorphological contexts, and physical-biotic conditions. Among many other examples, the following stand out: a) the widespread erosion and destruction of beaches and dunes in the Magdalena River delta, associated with the construction of the Bocas de Ceniza jetties; b) the drastic modification of the hydrodynamics of the littorals at the Atlantic and Magdalena departments due to linear infrastructure projects; c) the hyper-salinization and loss of more than 30,000 hectares of mangrove in the lagoon complex of the Ciénaga Grande de Santa Marta (CGSM) due to the expansion of the agricultural frontier and linear infrastructure projects; d) the accelerated retreat of beaches and cliffs in the southern Caribbean, due to activities such as deforestation, beach material extraction, and disordered and chaotic construction of nearly 500 rigid shore protection works; and e) the salinization of more than 10,000 hectares of freshwater marshes in the Bay of Cispatá as a consequence of the induced formation of the new delta of Tinajones. In this sense, the location of infrastructure in geological and geomorphologically unstable lands, affected by phenomena such as coastal subsidence and mud diapirism, poses first order natural threats and risks. This is a palpable panorama in the present and future of urban and rural areas of cities such as Barranquilla, Cartagena, Arboletes and Necoclí, all of them with future developments (industry, ports, urban development) of the greatest importance. The environmental costs associated with such interventions are incalculable, not counting the existence of numerous other examples, which demonstrate among other factors an insufficient acknowledgment to geomorphology in the evaluation, monitoring, and control of human interventions in the marine-coastal environment. These environmental management functions in Colombia are provided through the environmental licensing procedure, which rests upon national and regional authorities according to Law 99 of 1993. In the above context, the following research questions arise: What elements of the environmental licensing of interventions in coastal environments can be improved, giving priority to the particular geomorphological contexts of the intervention zones? How has the regulatory system evolved in Colombia with respect to human interventions on coastal environments? What technical improvements can be made to the Colombian regulatory framework to guide the evaluation, monitoring, and control of human interventions from the geomorphological approach of susceptibility? This research work examines the environmental regulatory framework that currently governs Colombian coastal zones, through two geographic levels. At the first macro level, human interventions 16 are characterized and analyzed on the continental Caribbean coast, a region that represents a significant sample of the Colombian context due to its higher levels of human occupation and consequent anthropogenic disturbances. At a second level, in greater detail, the conceptual and methodological approach resulting from this research is defined and illustrated, with the demonstration in one of the coastal environmental units defined by decree 1120 of 2013 for integrated coastal management. To answer the questions raised, Chapter I briefly introduces the historical geomorphological evolution of the Colombian coastlines since the end of the XVIII century. The complex geology and geomorphology of the Caribbean and Pacific coasts of Colombia are evident in this "appetizer", in which low-relief deltaic islands and mangroves contrast with steep rocky reliefs, cliffs and wide emerged and submerged coastal platforms. The historical evolution of the Colombian littorals involves changes in the coastline estimated in hundreds of meters, at maximum rates of 40 meters a year (Punta Rey, Arboletes, Tumaco Bay), and land losses and gains of the order of tens of square kilometers (Ciénaga de Mallorquín, Isla Cascajo, Tinajorenas Delta - Cispatá, Bay, Urabá Gulf, San Juan and Patía river deltas). These cases reflect drastic variations in the sediment balances of the coast, many of them caused or heavily influenced by human actions, such as navigation infrastructure, modification of river courses and coastal protection works. Chapter II identifies the geomorphological perspective in the environmental licensing of coastal interventions in Colombia, based on its comparison with the regulatory frameworks of Italy, Spain, and Cuba. The interviews and documentary reviews highlighted 59 interventions associated with human uses and activities in the coastal zones, whose compulsory nature for the licensing varies among countries. The natural geomorphological processes were also analyzed within the technical criteria included in the official guidelines for environmental studies. It is concluded that, despite the worldwide acceptance of environmental impact assessments through a licensing procedure, their application in coastal environments is still very diverse and limited in terms of the pertinence of the geomorphological processes that configures the coast. Therefore, seven good practices for the evaluation and control of anthropogenic impacts in the coastal zone are underlined, and a new process-oriented approach is introduced for environmental licensing procedures. In Chapter III, an inventory and characterization of human interventions on the continental coast of the Colombian Caribbean are documented, to establish a regional baseline. Based on images from Google Earth, a total of 2,742 works and activities were located, representing 29 different types of human interventions. This inventory was complemented with an evaluation of the general impact of each intervention, based on four attributes of its geomorphological effects, namely, extension, intensity, reversibility, and persistence. The three most common types of human interventions (low-density settlements, groins and luxury settlements with dock) were also the ones with the higher environmental impact. However, some interventions (e.g., high-density settlements or road infrastructure) had higher environmental impact values than more frequent ones. 17 Based on this exhaustive analysis of the Colombian Caribbean, Chapter IV evaluates the national environmental regulatory framework applicable to coastal areas. It evidences that the licensing procedure in Colombia currently regulates only four of the ten types of interventions with greater effect in the Colombian coastal zones. Also, the number of works and activities covered in each new legislative reform consistently decreased over time. In addition, three policy implications were extracted for coastal and ocean planning, related to a) the geographic diversity of tropical coastal zones; b) the need for territorial carrying capacity instruments and; c) the lack of articulation of territorial planning instruments. The conclusions identify an important gap between technical and political decision making in the environmental regulatory framework of Colombia, which stresses the need for the design of novel methods to assess the breadth and length of geomorphological dynamics in an environmental management context. Therefore, the previous chapters highlight three important deficiencies in Colombia, with respect to the environmental management of human interventions in coastal areas: 1) the absence of a strategy to determine interventions that require an environmental licensing procedure (screening); 2) a poor definition of the scope of environmental studies through relevant information requirements (scoping) and; 3) the disarticulation of environmental management instruments, such as territorial planning and enviro

    Renewing Local Planning to Face Climate Change in the Tropics

    Get PDF
    climate vulnerability; urban resilience; climate change; adaptation; planning; environmental risk analysis; decision making; disaster risk reduction; tropical climate managemen

    Renewing Local Planning to Face Climate Change in the Tropics

    Get PDF
    This book aims to inspire decision makers and practitioners to change their approach to climate planning in the tropics through the application of modern technologies for characterizing local climate and tracking vulnerability and risk, and using decision-making tools. Drawing on 16 case studies conducted mainly in the Caribbean, Central America, Western and Eastern Africa, and South East Asia it is shown how successful integration of traditional and modern knowledge can enhance disaster risk reduction and adaptation to climate change in the tropics. The case studies encompass both rural and urban settings and cover different scales: rural communities, cities, and regions. In addition, the book looks to the future of planning by addressing topics of major importance, including residual risk integration in local development plans, damage insurance and the potential role of climate vulnerability reduction credits. In many regions of the tropics, climate planning is growing but has still very low quality. This book identifies the weaknesses and proposes effective solutions

    GEOMATICS FOR EMERGENCY MANAGEMENT PURPOSES:DESIGN OF A GLOBAL GEODATABASE

    Get PDF
    Nowadays, the world is facing disasters on an unprecedented scale: millions of people are affected by natural disasters globally each year and, only in the last decade, more than 80% of all disaster-related deaths were caused by natural hazards. Scientific predictions and evidence indicate that global climate changes are increasing the number of extreme events, creating more frequent and intensified natural hazards such as floods and windstorms. Population growth, urbanization and the inability of poor populations to escape from the vicious cycle of poverty are conditions to foresee that there will most likely be an increase in the number of people who are vulnerable to natural hazards, with a resulting increase of natural disasters and environmental emergencies. In recent years, international preoccupation for disasters and their impacts has intensified and risen closer to the top of the development agenda. For many years, response to disasters was largely confined to emergency relief and short-term life-saving actions. But over the last two decades, the critical importance of disaster preparedness, mitigation, and prevention has been widely recognized. The humanitarian and the United Nations system are therefore called to intensify their efforts to improve their capacity in order to provide support to the countries in need and to be better prepared to intervene. Such request came, amongst others, from the UN General Secretary in various occasions. In the frame of humanitarian operations, the World Food Programme (WFP) of the United Nations is in the front line. The WFP is the biggest UN Agency and responds to more than 120 emergencies per year worldwide. According to the UN reform, WFP is also the leader of logistics for UN and international bodies during emergency response operations. WFP initiated a process to reinforce its capacity to be a leading force in the area of emergency response, improving its Information Management capacity in support to emergency preparedness and response. To do so, an agreement of collaboration with the recently formed Information Technology for Humanitarian Assistance Cooperation and Action (ITHACA) Association has been signed and a joint collaboration started in February 2007. One of the objectives of the collaboration is about the use of Geomatics and Information Technology instruments in the Early Warning and Early Impact analysis field. Many worldwide experiences conducted in this area, show that the use of remote sensing and Geographic Information Systems (GIS) technologies, combined with up-to-date, reliable and easily accessible reference base geographic datasets, constitute the key factor for the success of emergency operations and for developing valuable natural disaster preparedness, mitigation and prevention systems. As a matter of fact, the unique characteristics associated with geographic, or geospatial, information technologies facilitate the integration of scientific, social and economic data through space and time, opening up interesting possibilities for monitoring, assessment and change detection activities, thus enabling better informed interventions in human and natural systems. Besides its proven value, the geospatial information is an expensive resource and needs to be fully utilized to maximize the return on investment required for its generation, management and use. Reuse and sharing of spatial information for multiple purposes is an important approach applied in countries where investment in spatial data collection and in their appropriate management has advanced on the basis of its known asset value. Very substantial economic benefits have been estimated by countries that have moved in the direction of optimizing data reuse. However, it is still relatively easy to find examples of projects and other development activities from around the globe that required expensive recapture of essential spatial data because they were originally captured in unique or non-standard file formats, or perhaps discarded after initial use. Recapture of data has also been undertaken in many cases simply because its prior existence was known only by its originators. The United Nations has not been immune to this problem, both within and between the multitude of entities that make up the Secretariat and its agencies, funds and programmes. Historically, the production and use of geospatial data within the UN entities has been accomplished by its component organizations, according to their individual needs and expertise. This has resulted in multiple efforts, reduced opportunities for sharing and reuse of data, and a unnecessary cost burden for the UN system as a whole. Thus, a framework data development approach has been considered necessary. This has resulted in the proposal that implement an UN Spatial Data Infrastructure (SDI). The term SDI is used to denote the relevant base collection of technologies, policies and institutional arrangements that facilitate the availability of and access to spatial data. A SDI hosts geographic data and attributes, sufficient documentation (metadata), a means to discover, visualize and evaluate the data (catalogues and Web mapping), and some methods to provide access to the geographic data. Beyond this, it will also host additional services or software to support applications of the data. The concept of developing a Spatial Data Infrastructure to fulfil UN data management needs was duly approved by United Nations Geographic Information Working Group (UNGIWG) members in 2005 at their 6th Plenary Meeting in Addis Ababa, in the context of a UN-specific SDI, or UNSDI. The WFP, like all other UN agencies, has been called to develop a Spatial Data Infrastructure, according to the UNGIWG recommendations. Therefore, during the last year the different units of WFP involved in the use of geospatial data worked at defining and implementing a WFP SDI with the aim of contributing at the whole UNSDI project. This effort was coordinated and supported by the ITHACA association. Aim of the study The objective of the conducted research has been to investigate the better solution for collecting and organizing geospatial data within a suitable geodatabase with two main purposes:  to support the WFP SDI effort: the development of consistent reusable themes of base cartographic content, known as Framework, Fundamental or Core Data, is recognized as a main and first ingredient in the construction of a SDI. Therefore, the definition of a geodatabase supporting all the WFP units dealing with GIS and geospatial data can be considered a fundamental and necessary step in the whole complex process of the development of the WFP SDI. Common used data provide key for the integration and, in the context of the SDI implementation, the definition of a Core Data geodatabase can be thought as one instrumentality to help improving interoperability, reducing expenses resulting from the inevitable duplications. Moreover, the major aim of the planned geodatabase is to supply all WFP users of a "minimum spatial dataset" which assures valuable geographic analyses and mapping, in support to decision makers during emergencies operations.  to support all activities carried out by ITHACA: the planned geodatabase must constitute a suitable instrument which realizes the integration and the organization of the large geospatial data needed by all ITHACA units in their activities, allowing their effective distribution, sharing and reuse, avoiding any duplication. Moreover, the implemented solution must also guarantee the correct management and updating of the data, keeping their integrity. Finally, this instrument must also allow the easy and fast sharing of necessary information produced by ITHACA during Early Impact activities with the WFP's users engaged in the emergencies rescue operations. In conclusion, the major expected output of the study carried out, described in this thesis, has been the design and the development of a global database and of related rules and procedures in order to correctly store, manage, and exchange geospatial data needed either by WFP humanitarian workers and ITHACA users. The developed database solution allows integrating and updating globally consistent geographic data coming from different sources in many formats, providing each user with the latest datasets, thus avoiding duplications and mistakes. In methodological terms, the following procedure has been adopted: - defining requirements, identification of all activities supported by the geodatabase, analysis of the data flows expected in all supported activities, examining existing data sources and relevant standards (particularly those proposed by the UNGIWG); - development of the data model. The data model has been shaped according to specific needs and demands of the involved user groups within the different interested organizations. The adopted design techniques do not wander off the techniques proposed in literature for general database design, even if it has been necessary, in some steps, to consider the specific features of geographic data; - geodatabase schema generation and implementation of the defined geographic database model as an ESRI ArcSDE Enterprise Geodatabase based on Oracle 10g as DBM
    corecore