15 research outputs found

    Chelyshkov Collocation Method for Solving Three-Dimensional linear Fredholm Integral Equations

    Get PDF
    The main purpose of this work is to use the Chelyshkov-collocation method for the solution of three- dimensional Fredholm integral equations. The method is based on the approximate solution in terms of Chelyshkov polynomials with unknown coefficients. This method transforms the integral equation to a system of linear algebraic equations by means of collocation points. Finally, numerical results are included to show the validity and applicability of the method and comparisons are made with existing results

    Numerical solution of fractional Fredholm integro-differential equations by spectral method with fractional basis functions

    Full text link
    This paper presents an efficient spectral method for solving the fractional Fredholm integro-differential equations. The non-smoothness of the solutions to such problems leads to the performance of spectral methods based on the classical polynomials such as Chebyshev, Legendre, Laguerre, etc, with a low order of convergence. For this reason, the development of classic numerical methods to solve such problems becomes a challenging issue. Since the non-smooth solutions have the same asymptotic behavior with polynomials of fractional powers, therefore, fractional basis functions are the best candidate to overcome the drawbacks of the accuracy of the spectral methods. On the other hand, the fractional integration of the fractional polynomials functions is in the class of fractional polynomials and this is one of the main advantages of using the fractional basis functions. In this paper, an implicit spectral collocation method based on the fractional Chelyshkov basis functions is introduced. The framework of the method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton's iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with smooth and non-smooth solutions in comparison with other existing methods

    Numerical Solution of Fractional Order Fredholm Integro-differential Equations by Spectral Method with Fractional Basis Functions

    Get PDF
    This paper introduces a new numerical technique based on the implicit spectral collocation method and the fractional Chelyshkov basis functions for solving the fractional Fredholm integro-differential equations. The framework of the proposed method is to reduce the problem into a nonlinear system of equations utilizing the spectral collocation method along with the fractional operational integration matrix. The obtained algebraic system is solved using Newton’s iterative method. Convergence analysis of the method is studied. The numerical examples show the efficiency of the method on the problems with non-smooth solutions

    An efficient spectral method for solving third-kind Volterra integral equations with non-smooth solutions

    Full text link
    This paper is concerned with the numerical solution of the third kind Volterra integral equations with non-smooth solutions based on the recursive approach of the spectral Tau method. To this end, a new set of the fractional version of canonical basis polynomials (called FC-polynomials) is introduced. The approximate polynomial solution (called Tau-solution) is expressed in terms of FC-polynomials. The fractional structure of Tau-solution allows recovering the standard degree of accuracy of spectral methods even in the case of non-smooth solutions. The convergence analysis of the method is studied. The obtained numerical results show the accuracy and efficiency of the method compared to other existing methods

    A Wavelet Collocation Method for some Fractional Models

    Get PDF
    This article presents an effective numerical approach based on the operational matrix of fractional order integration of Haar wavelets for dealing with the fractional models of the mixing and the Newton law of cooling problems. A general procedure of obtaining the fractional integration operational matrix of Haar wavelets which converts the fractional models into a system of algebraic equations is derived so that the computation is very simple and it is much effective than the conventional numerical methods. The reliability and the applicability of the current numerical technique for fractional models are examined by comparing the achieved results with the precise solutions

    Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem

    Get PDF
    في هذا البحث، تم تنفيذ الطريقة الحسابية الفعالة (ECM) المستندة إلى متعددة الحدود القياسية الأحادية لحل مشكلة تدفق جيفري-هامل غير الخطية. علاوة على ذلك، تم تطوير واقتراح الطرق الحسابية الفعالة الجديدة في هذه الدراسة من خلال وظائف أساسية مناسبة وهي متعددات الحدود تشيبشيف، بيرنشتاين، ليجندر، هيرمت. يؤدي استخدام الدوال الأساسية إلى تحويل المسألة غير الخطية إلى نظام جبري غير خطي من المعادلات، والذي يتم حله بعد ذلك باستخدام برنامج ماثماتيكا®١٢. تم تطبيق تطوير طرق حسابية فعالة (D-ECM) لحل مشكلة تدفق جيفري-هامل غير الخطية، ثم تم عرض مقارنة بين الطرق. علاوة على ذلك، تم حساب الحد الأقصى للخطأ المتبقي ( )، لإظهار موثوقية الطرق المقترحة. تثبت النتائج بشكل مقنع أن ECM و D-ECM دقيقة وفعالة وموثوقة للحصول على حلول تقريبية للمشكلة.In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum error remainder ( ) has been calculated to exhibit the reliability of the suggested methods. The results persuasively prove that ECM and D-ECM are accurate, effective, and reliable in getting approximate solutions to the problem

    Bifurcation and Chaos in Fractional-Order Systems

    Get PDF
    This book presents a collection of seven technical papers on fractional-order complex systems, especially chaotic systems with hidden attractors and symmetries, in the research front of the field, which will be beneficial for scientific researchers, graduate students, and technical professionals to study and apply. It is also suitable for teaching lectures and for seminars to use as a reference on related topics

    A novel Chebyshev wavelet method for solving fractional-order optimal control problems

    Get PDF
    This thesis presents a numerical approach based on generalized fractional-order Chebyshev wavelets for solving fractional-order optimal control problems. The exact value of the Riemann– Liouville fractional integral operator of the generalized fractional-order Chebyshev wavelets is computed by applying the regularized beta function. We apply the given wavelets, the exact formula, and the collocation method to transform the studied problem into a new optimization problem. The convergence analysis of the proposed method is provided. The present method is extended for solving fractional-order, distributed-order, and variable-order optimal control problems. Illustrative examples are considered to show the advantage of this method in comparison with the existing methods in the literature

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference

    Fractional Calculus and the Future of Science

    Get PDF
    Newton foresaw the limitations of geometry’s description of planetary behavior and developed fluxions (differentials) as the new language for celestial mechanics and as the way to implement his laws of mechanics. Two hundred years later Mandelbrot introduced the notion of fractals into the scientific lexicon of geometry, dynamics, and statistics and in so doing suggested ways to see beyond the limitations of Newton’s laws. Mandelbrot’s mathematical essays suggest how fractals may lead to the understanding of turbulence, viscoelasticity, and ultimately to end of dominance of the Newton’s macroscopic world view.Fractional Calculus and the Future of Science examines the nexus of these two game-changing contributions to our scientific understanding of the world. It addresses how non-integer differential equations replace Newton’s laws to describe the many guises of complexity, most of which lay beyond Newton’s experience, and many had even eluded Mandelbrot’s powerful intuition. The book’s authors look behind the mathematics and examine what must be true about a phenomenon’s behavior to justify the replacement of an integer-order with a noninteger-order (fractional) derivative. This window into the future of specific science disciplines using the fractional calculus lens suggests how what is seen entails a difference in scientific thinking and understanding
    corecore