3,654 research outputs found

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering

    Get PDF
    Systems engineering is an ubiquitous discipline of Engineering overlapping industrial, chemical, mechanical, manufacturing, control, software, electrical, and civil engineering. It provides tools for dealing with the complexity and dynamics related to the optimisation of physical, natural, and virtual systems management. This paper presents a review of how multi-agent systems and complex networks theory are brought together to address systems engineering and management problems. The review also encompasses current and future research directions both for theoretical fundamentals and applications in the industry. This is made by considering trends such as mesoscale, multiscale, and multilayer networks along with the state-of-art analysis on network dynamics and intelligent networks. Critical and smart infrastructure, manufacturing processes, and supply chain networks are instances of research topics for which this literature review is highly relevant

    A Tensor-Based Formulation of Hetero-functional Graph Theory

    Full text link
    Recently, hetero-functional graph theory (HFGT) has developed as a means to mathematically model the structure of large flexible engineering systems. In that regard, it intellectually resembles a fusion of network science and model-based systems engineering. With respect to the former, it relies on multiple graphs as data structures so as to support matrix-based quantitative analysis. In the meantime, HFGT explicitly embodies the heterogeneity of conceptual and ontological constructs found in model-based systems engineering including system form, system function, and system concept. At their foundation, these disparate conceptual constructs suggest multi-dimensional rather than two-dimensional relationships. This paper provides the first tensor-based treatment of some of the most important parts of hetero-functional graph theory. In particular, it addresses the "system concept", the hetero-functional adjacency matrix, and the hetero-functional incidence tensor. The tensor-based formulation described in this work makes a stronger tie between HFGT and its ontological foundations in MBSE. Finally, the tensor-based formulation facilitates an understanding of the relationships between HFGT and multi-layer networks

    Production and inventory control in complex production systems using approximate dynamic programming.

    Get PDF
    Production systems focus not only on providing enough product to supply the market, but also on delivering the right product at the right price, while lowering the cost during the production process. The dynamics and uncertainties of modern production systems and the requirements of fast response often make its design and operation very complex. Thus, analytical models, such as those involving the use of dynamic programming, may fail to generate an optimal control policy for modern production systems. Modern production systems are often in possession of the features that allow them to produce various types of product through multiple working stations interacting with each other. The production process is usually divided into several stages, thus a number of intermediate components (WIP) are made to stock and wait to be handled by the next production stage. In particular, development of an efficient production and inventory control policy for such production systems is difficult, since the uncertain demand, system dynamics and large changeover times at the work stations cause significant problems. Also, due to the large state and action space, the controlling problems of modern production systems often suffer from the curse of dimensionality

    ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Get PDF
    Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT)-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE)) for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    Automatic detection and prediction of discontinuities in laser beam butt welding utilizing deep learning

    Get PDF
    Laser beam butt welding of thin sheets of high-alloy steel can be really challenging due to the formation of joint gaps, affecting weld seam quality. Industrial approaches rely on massive clamping systems to limit joint gap formation. However, those systems have to be adapted for each individually component geometry, making them very cost-intensive and leading to a limited flexibility. In contrast, jigless welding can be a high flexible alternative to substitute conventionally used clamping systems. Based on the collaboration of different actuators, motions systems or robots, the approach allows an almost free workpiece positioning. As a result, jigless welding gives the possibility for influencing the formation of the joint gap by realizing an active position control. However, the realization of an active position control requires an early and reliable error prediction to counteract the formation of joint gaps during laser beam welding. This paper proposes different approaches to predict the formation of joint gaps and gap induced weld discontinuities in terms of lack of fusion based on optical and tactile sensor data. Our approach achieves 97.4 % accuracy for video-based weld discontinuity detection and a mean absolute error of 0.02 mm to predict the formation of joint gaps based on tactile length measurements by using inductive probes
    • …
    corecore