3,482 research outputs found

    An Open-Source Web-Based Tool for Resource-Agnostic Interactive Translation Prediction

    Get PDF
    We present a web-based open-source tool for interactive translation prediction (ITP) and describe its underlying architecture. ITP systems assist human translators by making context-based computer-generated suggestions as they type. Most of the ITP systems in literature are strongly coupled with a statistical machine translation system that is conveniently adapted to provide the suggestions. Our system, however, follows a resource-agnostic approach and suggestions are obtained from any unmodified black-box bilingual resource. This paper reviews our ITP method and describes the architecture of Forecat, a web tool, partly based on the recent technology of web components, that eases the use of our ITP approach in any web application requiring this kind of translation assistance. We also evaluate the performance of our method when using an unmodified Moses-based statistical machine translation system as the bilingual resource.This work has been partly funded by the Spanish Ministerio de EconomĂ­a y Competitividad through project TIN2012-32615

    Comparative Human and Automatic Evaluation of Glass-Box and Black-Box Approaches to Interactive Translation Prediction

    Get PDF
    Interactive translation prediction (ITP) is a modality of computer-aided translation that assists professional translators by offering context-based computer-generated continuation suggestions as they type. While most state-of-the-art ITP systems follow a glass-box approach, meaning that they are tightly coupled to an adapted machine translation system, a black-box approach which does not need access to the inner workings of the bilingual resources used to generate the suggestions has been recently proposed in the literature: this new approach allows new sources of bilingual information to be included almost seamlessly. In this paper, we compare for the first time the glass-box and the black-box approaches by means of an automatic evaluation of translation tasks between related languages such as English–Spanish and unrelated ones such as Arabic–English and English–Chinese, showing that, with our setup, 20%–50% of keystrokes could be saved using either method and that the black-box approach outperformed the glass-box one in five out of six scenarios operating under similar conditions. We also performed a preliminary human evaluation of English to Spanish translation for both approaches. On average, the evaluators saved 10% keystrokes and were 4% faster with the black-box approach, and saved 15% keystrokes and were 12% slower with the glass-box one; but they could have saved 51% and 69% keystrokes respectively if they had used all the compatible suggestions. Users felt the suggestions helped them to translate faster and easier. All the tools used to perform the evaluation are available as free/open–source software.Work partially funded by the Generalitat Valenciana through grant ACIF/2014/365, the Spanish government through project EFFORTUNE (TIN2015-69632-R), and by the Government of the Republic of Kazakhstan

    Segment-based interactive-predictive machine translation

    Full text link
    [EN] Machine translation systems require human revision to obtain high-quality translations. Interactive methods provide an efficient humanÂżcomputer collaboration, notably increasing productivity. Recently, new interactive protocols have been proposed, seeking for a more effective user interaction with the system. In this work, we present one of these new protocols, which allows the user to validate all correct word sequences in a translation hypothesis. Thus, the left-to-right barrier from most of the existing protocols is broken. We compare this protocol against the classical prefix-based approach, obtaining a significant reduction of the user effort in a simulated environment. Additionally, we experiment with the use of confidence measures to select the word the user should correct at each iteration, reaching the conclusion that the order in which words are corrected does not affect the overall effort.The research leading to these results has received funding from the Ministerio de Economia y Competitividad (MINECO) under Project CoMUN-HaT (Grant Agreement TIN2015-70924-C2-1-R), and Generalitat Valenciana under Project ALMAMATER (Ggrant Agreement PROMETEOII/2014/030).Domingo-Ballester, M.; Peris-Abril, Á.; Casacuberta Nolla, F. (2017). Segment-based interactive-predictive machine translation. Machine Translation. 31(4):163-185. https://doi.org/10.1007/s10590-017-9213-3S163185314Alabau V, Bonk R, Buck C, Carl M, Casacuberta F, GarcĂ­a-MartĂ­nez M, GonzĂĄlez-Rubio J, Koehn P, Leiva LA, Mesa-Lao B, Ortiz-MartĂ­nez D, Saint-Amand H, Sanchis-Trilles G, Tsoukala C (2013) CASMACAT: an open source workbench for advanced computer aided translation. Prague Bull Math Linguist 100:101–112Alabau V, RodrĂ­guez-Ruiz L, Sanchis A, MartĂ­nez-GĂłmez P, Casacuberta F (2011) On multimodal interactive machine translation using speech recognition. In: Proceedings of the International Conference on Multimodal Interaction, pp 129–136Alabau V, Sanchis A, Casacuberta F (2014) Improving on-line handwritten recognition in interactive machine translation. Pattern Recognit 47(3):1217–1228Apostolico A, Guerra C (1987) The longest common subsequence problem revisited. Algorithmica 2:315–336Azadi F, Khadivi S (2015) Improved search strategy for interactive machine translation in computer assisted translation. In: Proceedings of Machine Translation Summit XV, pp 319–332Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. In: Proceedings of the International Conference on Learning Representations. arXiv:1409.0473Barrachina S, Bender O, Casacuberta F, Civera J, Cubel E, Khadivi S, Lagarda A, Ney H, TomĂĄs J, Vidal E, Vilar J-M (2009) Statistical approaches to computer-assisted translation. Comput Linguist 35:3–28Brown PF, Pietra VJD, Pietra SAD, Mercer RL (1993) The mathematics of statistical machine translation: parameter estimation. Comput Linguist 19(2):263–311Chen SF, Goodman J (1996) An empirical study of smoothing techniques for language modeling. In: Proceedings of the Annual Meeting on Association for Computational Linguistics, pp 310–318Cheng S, Huang S, Chen H, Dai X, Chen J (2016) PRIMT: a pick-revise framework for interactive machine translation. In: Proceedings of the North American Chapter of the Association for Computational Linguistics, pp 1240–1249Dale R (2016) How to make money in the translation business. Nat Lang Eng 22(2):321–325Domingo M, Peris, Á, Casacuberta F (2016) Interactive-predictive translation based on multiple word-segments. In: Proceedings of the Annual Conference of the European Association for Machine Translation, pp 282–291Federico M, Bentivogli L, Paul M, StĂŒker S (2011) Overview of the IWSLT 2011 evaluation campaign. In: International Workshop on Spoken Language Translation, pp 11–27Foster G, Isabelle P, Plamondon P (1997) Target-text mediated interactive machine translation. Mach Transl 12:175–194GonzĂĄlez-Rubio J, BenedĂ­ J-M, Casacuberta F (2016) Beyond prefix-based interactive translation prediction. In: Proceedings of the SIGNLL Conference on Computational Natural Language Learning, pp 198–207GonzĂĄlez-Rubio J, Ortiz-MartĂ­nez D, Casacuberta F (2010) On the use of confidence measures within an interactive-predictive machine translation system. In: Proceedings of the Annual Conference of the European Association for Machine TranslationKnowles R, Koehn P (2016) Neural interactive translation prediction. In: Proceedings of the Association for Machine Translation in the Americas, pp 107–120Koehn P (2005) Europarl: a parallel corpus for statistical machine translation. In: Proceedings of the Machine Translation Summit, pp 79–86Koehn P (2010) Statistical machine translation. Cambridge University Press, CambridgeKoehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp 177–180Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology, pp 48–54Koehn P, Tsoukala C, Saint-Amand H (2014) Refinements to interactive translation prediction based on search graphs. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics, pp 574–578Marie B, Max A (2015) Touch-based pre-post-editing of machine translation output. In: Proceedings of the conference on empirical methods in natural language processing, pp 1040–1045Nepveu L, Lapalme G, Langlais P, Foster G (2004) Adaptive language and translation models for interactive machine translation. In: Proceedings of the conference on empirical method in natural language processing, pp 190–197Nielsen J (1993) Usability engineering. Morgan Kaufmann Publishers Inc, BurlingtonOch F J (2003) Minimum error rate training in statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 160–167Och FJ, Ney H (2002) Discriminative training and maximum entropy models for statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 295–302Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Linguist 29(1):19–51Ortiz-MartĂ­nez D (2016) Online learning for statistical machine translation. Comput Linguist 42(1):121–161Papineni K, Roukos S, Ward T, Zhu W-J (2002) BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 311–318Peris Á, Domingo M, Casacuberta F (2017) Interactive neural machine translation. Comput Speech Lang. 45:201–220Sanchis-Trilles G, Ortiz-MartĂ­nez D, Civera J, Casacuberta F, Vidal E, Hoang H (2008) Improving interactive machine translation via mouse actions. In: Proceedings of the conference on empirical methods in natural language processing, pp 485–494Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted human annotation. In: Proceedings of the Association for Machine Translation in the Americas, pp 223–231Stolcke A (2002) SRILM—an extensible language modeling toolkit. In: Proceedings of the international conference on spoken language processing, pp 257–286Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. NIPS 27:3104–3112Tiedemann J (2009) News from OPUS—a collection of multilingual parallel corpora with tools and interfaces. Recent Adv Nat Lang Process 5:237–248TomĂĄs J, Casacuberta F(2006) Statistical phrase-based models for interactive computer-assisted translation. In: Proceedings of the international conference on computational linguistics/Association for Computational Linguistics, pp 835–841Torregrosa D, Forcada ML, PĂ©rez-Ortiz JA (2014) An open-source web-based tool for resource-agnostic interactive translation prediction. Prague Bull Math Linguist 102:69–80Tseng H, Chang P, Andrew G, Jurafsky D, Manning C (2005) A conditional random field word segmenter. In: Proceedings of the special interest group of the association for computational linguistics workshop on Chinese language processing, pp 168–171Ueffing N, Ney H (2005) Application of word-level confidence measures in interactive statistical machine translation. In: Proceedings of the European Association for Machine Translation, pp 262–270Vogel S, Ney H, Tillmann C (1996) HMM-based word alignment in statistical translation. Proc Conf Comput Linguist 2:836–841Wuebker J, Green S, DeNero J, Hasan S, Luong M-T(2016) Models and inference for prefix-constrained machine translation. In: Proceedings of the annual meeting of the association for the computational linguistics, pp 66–75Zens R, Och FJ, Ney H (2002) Phrase-based statistical machine translation. In: Proceedings of the annual German conference on advances in artificial intelligence 2479:18–3

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin

    Linguistically-Informed Neural Architectures for Lexical, Syntactic and Semantic Tasks in Sanskrit

    Full text link
    The primary focus of this thesis is to make Sanskrit manuscripts more accessible to the end-users through natural language technologies. The morphological richness, compounding, free word orderliness, and low-resource nature of Sanskrit pose significant challenges for developing deep learning solutions. We identify four fundamental tasks, which are crucial for developing a robust NLP technology for Sanskrit: word segmentation, dependency parsing, compound type identification, and poetry analysis. The first task, Sanskrit Word Segmentation (SWS), is a fundamental text processing task for any other downstream applications. However, it is challenging due to the sandhi phenomenon that modifies characters at word boundaries. Similarly, the existing dependency parsing approaches struggle with morphologically rich and low-resource languages like Sanskrit. Compound type identification is also challenging for Sanskrit due to the context-sensitive semantic relation between components. All these challenges result in sub-optimal performance in NLP applications like question answering and machine translation. Finally, Sanskrit poetry has not been extensively studied in computational linguistics. While addressing these challenges, this thesis makes various contributions: (1) The thesis proposes linguistically-informed neural architectures for these tasks. (2) We showcase the interpretability and multilingual extension of the proposed systems. (3) Our proposed systems report state-of-the-art performance. (4) Finally, we present a neural toolkit named SanskritShala, a web-based application that provides real-time analysis of input for various NLP tasks. Overall, this thesis contributes to making Sanskrit manuscripts more accessible by developing robust NLP technology and releasing various resources, datasets, and web-based toolkit.Comment: Ph.D. dissertatio

    Novel Datasets, User Interfaces and Learner Models to Improve Learner Engagement Prediction on Educational Videos

    Get PDF
    With the emergence of Open Education Resources (OERs), educational content creation has rapidly scaled up, making a large collection of new materials made available. Among these, we find educational videos, the most popular modality for transferring knowledge in the technology-enhanced learning paradigm. Rapid creation of learning resources opens up opportunities in facilitating sustainable education, as the potential to personalise and recommend specific materials that align with individual users’ interests, goals, knowledge level, language and stylistic preferences increases. However, the quality and topical coverage of these materials could vary significantly, posing significant challenges in managing this large collection, including the risk of negative user experience and engagement with these materials. The scarcity of support resources such as public datasets is another challenge that slows down the development of tools in this research area. This thesis develops a set of novel tools that improve the recommendation of educational videos. Two novel datasets and an e-learning platform with a novel user interface are developed to support the offline and online testing of recommendation models for educational videos. Furthermore, a set of learner models that accounts for the learner interests, knowledge, novelty and popularity of content is developed through this thesis. The different models are integrated together to propose a novel learner model that accounts for the different factors simultaneously. The user studies conducted on the novel user interface show that the new interface encourages users to explore the topical content more rigorously before making relevance judgements about educational videos. Offline experiments on the newly constructed datasets show that the newly proposed learner models outperform their relevant baselines significantly

    CommonsenseVIS: Visualizing and Understanding Commonsense Reasoning Capabilities of Natural Language Models

    Full text link
    Recently, large pretrained language models have achieved compelling performance on commonsense benchmarks. Nevertheless, it is unclear what commonsense knowledge the models learn and whether they solely exploit spurious patterns. Feature attributions are popular explainability techniques that identify important input concepts for model outputs. However, commonsense knowledge tends to be implicit and rarely explicitly presented in inputs. These methods cannot infer models' implicit reasoning over mentioned concepts. We present CommonsenseVIS, a visual explanatory system that utilizes external commonsense knowledge bases to contextualize model behavior for commonsense question-answering. Specifically, we extract relevant commonsense knowledge in inputs as references to align model behavior with human knowledge. Our system features multi-level visualization and interactive model probing and editing for different concepts and their underlying relations. Through a user study, we show that CommonsenseVIS helps NLP experts conduct a systematic and scalable visual analysis of models' relational reasoning over concepts in different situations.Comment: This paper is accepted by IEEE VIS, 2023. To appear in IEEE Transactions on Visualization and Computer Graphics (IEEE TVCG). 14 pages, 11 figure

    Computational and chemical approaches to drug repurposing

    Get PDF
    Drug repurposing, which entails discovering novel therapeutic applications for already existing drugs, provides numerous benefits compared to conventional drug discovery methods. This strategy can be pursued through two primary approaches: computational and chemical. Computational methods involve the utilization of data mining and bioinformatics techniques to identify potential drug candidates, while chemical approaches involve experimental screens oriented to finding new potential treatments based on existing drugs. Both computational and chemical methods have proven successful in uncovering novel therapeutic uses for established drugs. During my PhD, I participated in several experimental drug repurposing screens based on high-throughput phenotypic approaches. Finally, attracted by the potential of computational drug repurposing pipelines, I decided to contribute and generate a web platform focused on the use of transcriptional signatures to identify potential new treatments for human disease. A summary of these studies follows: In Study I, we utilized the tetracycline repressor (tetR)-regulated mechanism to create a human osteosarcoma cell line (U2OS) with the ability to express TAR DNA-binding protein 43 (TDP-43) upon induction. TDP-43 is a protein known for its association with several neurodegenerative diseases. We implemented a chemical screening with this system as part of our efforts to repurpose approved drugs. While the screening was unsuccessful to identify modulators of TDP-43 toxicity, it revealed compounds capable of inhibiting the doxycyclinedependent TDP-43 expression. Furthermore, a complementary CRISPR/Cas9 screening using the same cell system identified additional regulators of doxycycline-dependent TDP43 expression. This investigation identifies new chemical and genetic modulators of the tetR system and highlights potential limitations of using this system for chemical or genetic screenings in mammalian cells. In Study II, our objective was to reposition compounds that could potentially reduce the toxic effects of a fragment of the Huntingtin (HTT) protein containing a 94 amino acid long glutamine stretch (Htt-Q94), a feature of Huntington's disease (HD). To achieve this, we carried out a high-throughput chemical screening using a varied collection of 1,214 drugs, largely sourced from a drug repurposing library. Through our screening process, we singled out clofazimine, an FDA-approved anti-leprosy drug, as a potential therapeutic candidate. Its effectiveness was validated across several in vitro models as well as a zebrafish model of polyglutamine (polyQ) toxicity. Employing a combination of computational analysis of transcriptional signatures, molecular modeling, and biochemical assays, we deduced that clofazimine is an agonist for the peroxisome proliferator-activated receptor gamma (PPARÎł), a receptor previously suggested to be a viable therapeutic target for HD due to its role in promoting mitochondrial biogenesis. Notably, clofazimine was successful in alleviating the mitochondrial dysfunction triggered by the expression of Htt-Q94. These findings lend substantial support to the potential of clofazimine as a viable candidate for drug repurposing in the treatment of polyQ diseases. In Study III, we explored the molecular mechanism of a previously identified repurposing example, the use of diethyldithiocarbamate-copper complex (CuET), a disulfiram metabolite, for cancer treatment. We found CuET effectively inhibits cancer cell growth by targeting the NPL4 adapter of the p97VCP segregase, leading to translational arrest and stress in tumor cells. CuET also activates ribosomal biogenesis and autophagy in cancer cells, and its cytotoxicity can be enhanced by inhibiting these pathways. Thus, CuET shows promise as a cancer treatment, especially in combination therapies. In Study IV, we capitalized on the Molecular Signatures Database (MSigDB), one of the largest signature repositories, and drug transcriptomic profiles from the Connectivity Map (CMap) to construct a comprehensive and interactive drug-repurposing database called the Drug Repurposing Encyclopedia (DRE). Housing over 39.7 million pre-computed drugsignature associations across 20 species, the DRE allows users to conduct real-time drugrepurposing analysis. This can involve comparing user-supplied gene signatures with existing ones in the DRE, carrying out drug-gene set enrichment analyses (drug-GSEA) using submitted drug transcriptomic profiles, or conducting similarity analyses across all database signatures using user-provided gene sets. Overall, the DRE is an exhaustive database aimed at promoting drug repurposing based on transcriptional signatures, offering deep-dive comparisons across molecular signatures and species. Drug repurposing presents a valuable strategy for discovering fresh therapeutic applications for existing drugs, offering numerous benefits compared to conventional drug discovery methods. The studies conducted in this thesis underscore the potential of drug repurposing and highlight the complementary roles of computational and chemical approaches. These studies enhance our understanding of the mechanistic properties of repurposed drugs, such as clofazimine and disulfiram, and reveal novel mechanisms for targeting specific disease pathways. Additionally, the development of the DRE platform provides a comprehensive tool to support researchers in conducting drug-repositioning analyses, further facilitating the advancement of drug repurposing studies
    • 

    corecore