481 research outputs found

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Developing a Multiplayer Online Learning Environment to Web Support with AJAX3D and Virtual Reality

    Get PDF
    This paper presents Ludos Top - an educational 3D game that use virtual reality techniques, which can support multi-student with anew design model of networking on the web. The project has actively involved end-users to focus on increase interactivity through the use of versatile system architecture.We present a quick prototyping of a multi-user virtual world through the employment of Ajax, X3D and Web Services provides an efficient, flexible and robust means for distributed application. Results showimproved network capabilities, in terms of interactive, ease of use, enjoyability, playability and usability

    JSB Composability and Web Services Interoperability Via Extensible Modeling & Simulation Framework (XMSF), Model Driven Architecture (MDA), Component Repositories, and Web-based Visualization

    Get PDF
    Study Report prepared for the U. S. Air Force, Joint Synthetic Battlespace Analysis of Technical Approaches (ATA) Studies & Prototyping Overview: This paper summarizes research work conducted by organizations concerned with interoperable distributed information technology (IT) applications, in particular the Naval Postgraduate School (NPS) and Old Dominion University (ODU). Although the application focus is distributed modeling & simulation (M&S) the results and findings are in general easily applicable to other distributed concepts as well, in particular the support of operations by M&S applications, such as distributed mission operations. The core idea of this work is to show the necessity of applying open standards for component description, implementation, and integration accompanied by aligned management processes and procedures to enable continuous interoperability for legacy and new M&S components of the live, virtual, and constructive domain within the USAF Joint Synthetic Battlespace (JSB). JSB will be a common integration framework capable of supporting the future emerging simulation needs ranging from training and battlefield rehearsal to research, system development and acquisition in alignment with other operational requirements, such as integration of command and control, support of operations, integration of training ranges comprising real systems, etc. To this end, the study describes multiple complementary Integrated Architecture Framework approaches and shows, how the various parts must be orchestrated in order to support the vision of JSB effectively and efficiently. Topics of direct relevance include Web Services via Extensible Modeling & Simulation Framework (XMSF), the Object Management Group (OMG)’s Model Driven Architecture (MDA), XML-based resource repositories, and Web-based X3D visualization. To this end, the report shows how JSB can − Utilize Web Services throughout all components via XMSF methodologies, − Compose diverse system visualizations using Web-based X3D graphics, − Benefit from distributed modeling methods using MDA, and − Best employ resource repositories for broad and consistent composability. Furthermore, the report recommends the establishment of necessary management organizations responsible for the necessary alignment of management processes and procedures within the JSB as well as with neighbored domains. Continuous interoperability cannot be accomplished by technical standards alone. The application of technical standards targets the implementation level of the system of systems, which results in an interoperable solution valid only for the actual 2 implementation. To insure continuity, the influence of updates, upgrades and introduction of components on the system of systems must be captured in the project management procedures of the participating systems. Finally, the report proposes an exemplifying set of proof-of-capability demonstration prototypes and a five-year technical/institutional transformation plan. All key references are online available at http://www.movesinstitute.org/xmsf/xmsf.html (if not explicitly stated otherwise)

    Modern Information Systems

    Get PDF
    The development of modern information systems is a demanding task. New technologies and tools are designed, implemented and presented in the market on a daily bases. User needs change dramatically fast and the IT industry copes to reach the level of efficiency and adaptability for its systems in order to be competitive and up-to-date. Thus, the realization of modern information systems with great characteristics and functionalities implemented for specific areas of interest is a fact of our modern and demanding digital society and this is the main scope of this book. Therefore, this book aims to present a number of innovative and recently developed information systems. It is titled "Modern Information Systems" and includes 8 chapters. This book may assist researchers on studying the innovative functions of modern systems in various areas like health, telematics, knowledge management, etc. It can also assist young students in capturing the new research tendencies of the information systems' development

    Integrating heterogeneous open-source software into web browsers using AMICO:WEB

    Get PDF
    A web browser provides a uniform user interface to different types of information. Making this interface universally accessible and more interactive is a long term goal still far from being achieved. Universally accessible browsers require novel interaction modalities and additional functionalities, for which existing browsers tend to provide only partial solutions. Although functionality for web accessibility can be found as open-source and free software components, their reuse and integration is complex because they were developed in diverse implementation environments, following standards and conventions incompatible with the web. To enable the integration of existing partial solutions within a mainstream web browser environment, we have developed a middleware infrastructure, AMICO:WEB. This enables browser access to a wide variety of open source and free software components. The main contribution of AMICO:WEB is in enabling the syntactic interoperability between web extension mechanisms and a variety of integration mechanisms used by open-source and free software components. It also bridges the semantic differences between the high-level world of web XML-based APIs and the low-level APIs of the device-oriented world. We discuss the design decisions made during the development of AMICO:WEB in the context of web accessibility, using two typical usage scenarios: one describing a disabled user using a mainstream web browser with additional interaction modalities; another describing a non-disabled user browsing in a suboptimal interaction situation

    3D Virtual Worlds and the Metaverse: Current Status and Future Possibilities

    Get PDF
    Moving from a set of independent virtual worlds to an integrated network of 3D virtual worlds or Metaverse rests on progress in four areas: immersive realism, ubiquity of access and identity, interoperability, and scalability. For each area, the current status and needed developments in order to achieve a functional Metaverse are described. Factors that support the formation of a viable Metaverse, such as institutional and popular interest and ongoing improvements in hardware performance, and factors that constrain the achievement of this goal, including limits in computational methods and unrealized collaboration among virtual world stakeholders and developers, are also considered

    Editor’s Note

    Get PDF
    The research works presented in this issue are based on various topics of interest, among which are included: bayesian networks, evolutionary algorithms, virtual reality, web advertising, 3D technologies, traffic expression, Smart Cities, computational sustainability, computer vision, image recognition, deep neural networks, graphical models, mobile devices, human/complex system interactions, multi-agent systems, Physics inspired behaviours, etc

    3DRepo4Unity: Dynamic Loading of Version Controlled 3D Assets into the Unity Game Engine

    Get PDF
    In recent years, Unity has become a popular platform for the development of a broad range of visualization and VR applications. This is due to its ease of use, cross-platform compatibility and accessibility to independent developers. Despite such applications being cross-platform, their assets are generally bundled with executables, or streamed at runtime in a highly optimised, proprietary format. In this paper, we present a novel system for dynamically populating a Unity environment at runtime using open Web3D standards. Our system generates dynamic resources at runtime from a remote 3D Repo repository. This enables us to build a viewer which can easily visualize X3D-based revisions from a version controlled database in the cloud without any compile-time knowledge of the assets. We motivate the work and introduce the high-level architecture of our solution. We describe our new dynamic transcoding library with an emphasis on scalability and 3D rendering. We then perform a comparative evaluation between 3drepo.io, a state of the art X3DOM based renderer, and the new 3DRepo4Unity library on web browser platforms. Finally, we present a number of different applications that demonstrate the practicality of our chosen approach. By building on previous Web3D functionality and standards, our hope is to stimulate further discussion around and research into web formats that would enable incremental loading on other platforms

    Integrating realistic human group behaviors into a networked 3D virtual environment

    Get PDF
    Distributed Interactive Simulation DIS-Java-VRML Working Group. Includes supplementary material provided from the contents of a CD-Rom issued containing the work of all three Working Group members and all supplementary material, in compressed format.Virtual humans operating inside large-scale virtual environments (VE) are typically controlled as single entities. Coordination of group activity and movement is usually the responsibility of their real world human controllers. Georeferencing coordinate systems, single-precision versus double-precision number representation and network delay requirements make group operations difficult. Mounting multiple humans inside shared or single vehicles, (i.e. air-assault operations, mechanized infantry operations, or small boat/riverine operations) with high fidelity is often impossible. The approach taken in this thesis is to reengineer the DIS-Java-VRML Capture the Flag game geolocated at Fort Irwin, California to allow the inclusion of human entities. Human operators are given the capability of aggregating or mounting nonhuman entities for coordinated actions. Additionally, rapid content creation of human entities is addressed through the development of a native tag set for the Humanoid Animation (H-Anim) 1.1 Specification in Extensible 3D (X3D). Conventions are demonstrated for integrating the DIS-Java-VRML and H-Anim draft standards using either VRML97 or X3D encodings. The result of this work is an interface to aggregate and control articulated humans using an existing model with a standardized motion library in a networked virtual environment. Virtual human avatars can be mounted and unmounted from aggregation entities. Simple demonstration examples show coordinated tactical maneuver among multiple humans with and without vehicles. Live 3D visualization of animated humanoids on realistic terrain is then portrayed inside freely available web browsers.Approved for public release; distribution is unlimited
    • 

    corecore