2,547 research outputs found

    Use of the terms "Wellbeing" and "Quality of Life" in health sciences: A conceptual framework

    Get PDF
    Background and Objectives: The assessment of wellbeing is a top priority in health sciences. The aim of this paper is to review the history of the concept of wellbeing and “Quality of Life” (QoL), and to understand the theories and assumptions that guided this field in order to provide a conceptual framework that may eventually facilitate the development of a formal synset (grouping of synonyms and semantically similar terms) of health-related wellbeing Methods: The history of the concept of wellbeing and QoL was reviewed in order to provide a conceptual framework. Results: Huge differences exist on the definition of “Wellbeing” and its relationship with QoL, “Happiness” and “Functioning” in the health context. From a dimensional perspective, health related wellbeing could be regarded as an overarching construct characterised by asymmetrical polarity, where “wellbeing” embeds the concept of “ill-being” as “health” incorporates de concept of “disease”. Conclusions: A common conceptual framework of these terms may eventually facilitate the development of a formal synset of health-related wellbeing. This terminological clarification should be part of a new taxonomy of health-related wellbeing based on the International Classification of Functioning, Disability and Health (ICF) framework that may facilitate knowledge transfer across different sectors and semantic interoperability for care management and planningThe research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement numbers 223071 (COURAGE in Europe) and 282586 (ROAMER), from the Instituto de Salud Carlos III-FIS research grant number PS09/00295, and from the Spanish Ministry of Science and Innovation ACI-Promociona (ACI2009-1010 and ACI- 2011-1080). The study was supported by the Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos II

    A Knowledge-based Integrative Modeling Approach for <em>In-Silico</em> Identification of Mechanistic Targets in Neurodegeneration with Focus on Alzheimer’s Disease

    Get PDF
    Dementia is the progressive decline in cognitive function due to damage or disease in the body beyond what might be expected from normal aging. Based on neuropathological and clinical criteria, dementia includes a spectrum of diseases, namely Alzheimer's dementia, Parkinson's dementia, Lewy Body disease, Alzheimer's dementia with Parkinson's, Pick's disease, Semantic dementia, and large and small vessel disease. It is thought that these disorders result from a combination of genetic and environmental risk factors. Despite accumulating knowledge that has been gained about pathophysiological and clinical characteristics of the disease, no coherent and integrative picture of molecular mechanisms underlying neurodegeneration in Alzheimer’s disease is available. Existing drugs only offer symptomatic relief to the patients and lack any efficient disease-modifying effects. The present research proposes a knowledge-based rationale towards integrative modeling of disease mechanism for identifying potential candidate targets and biomarkers in Alzheimer’s disease. Integrative disease modeling is an emerging knowledge-based paradigm in translational research that exploits the power of computational methods to collect, store, integrate, model and interpret accumulated disease information across different biological scales from molecules to phenotypes. It prepares the ground for transitioning from ‘descriptive’ to “mechanistic” representation of disease processes. The proposed approach was used to introduce an integrative framework, which integrates, on one hand, extracted knowledge from the literature using semantically supported text-mining technologies and, on the other hand, primary experimental data such as gene/protein expression or imaging readouts. The aim of such a hybrid integrative modeling approach was not only to provide a consolidated systems view on the disease mechanism as a whole but also to increase specificity and sensitivity of the mechanistic model by providing disease-specific context. This approach was successfully used for correlating clinical manifestations of the disease to their corresponding molecular events and led to the identification and modeling of three important mechanistic components underlying Alzheimer’s dementia, namely the CNS, the immune system and the endocrine components. These models were validated using a novel in-silico validation method, namely biomarker-guided pathway analysis and a pathway-based target identification approach was introduced, which resulted in the identification of the MAPK signaling pathway as a potential candidate target at the crossroad of the triad components underlying disease mechanism in Alzheimer’s dementia

    Enabling semantic queries across federated bioinformatics databases

    Get PDF
    MOTIVATION: Data integration promises to be one of the main catalysts in enabling new insights to be drawn from the wealth of biological data available publicly. However, the heterogeneity of the different data sources, both at the syntactic and the semantic level, still poses significant challenges for achieving interoperability among biological databases. RESULTS: We introduce an ontology-based federated approach for data integration. We applied this approach to three heterogeneous data stores that span different areas of biological knowledge: (i) Bgee, a gene expression relational database; (ii) Orthologous Matrix (OMA), a Hierarchical Data Format 5 orthology DS; and (iii) UniProtKB, a Resource Description Framework (RDF) store containing protein sequence and functional information. To enable federated queries across these sources, we first defined a new semantic model for gene expression called GenEx. We then show how the relational data in Bgee can be expressed as a virtual RDF graph, instantiating GenEx, through dedicated relational-to-RDF mappings. By applying these mappings, Bgee data are now accessible through a public SPARQL endpoint. Similarly, the materialized RDF data of OMA, expressed in terms of the Orthology ontology, is made available in a public SPARQL endpoint. We identified and formally described intersection points (i.e. virtual links) among the three data sources. These allow performing joint queries across the data stores. Finally, we lay the groundwork to enable nontechnical users to benefit from the integrated data, by providing a natural language template-based search interface

    Doctor of Philosophy

    Get PDF
    dissertationThe use of the various complementary and alternative medicine (CAM) modalities for the management of chronic illnesses is widespread, and still on the rise. Unfortunately, tools to support consumers in seeking information on the efficacy of these treatments are sparse and incomplete. The goals of this work were to understand CAM information needs in acquiring CAM information, assess currently available information resources, and investigate informatics methods to provide a foundation for the development of CAM information resources. This dissertation consists of four studies. The first was a quantitative study that aimed to assess the feasibility of delivering CAM-drug interaction information through a web-based application. This study resulted in an 85% participation rate and 33% of those patients reported the use of CAMs that had potential interactions with their conventional treatments. The next study aimed to assess online CAM information resources that provide information on drug-herb interactions to consumers. None of the sites scored high on the combination of completeness and accuracy and all sites were beyond the recommended reading level per the US Department of Health and Human Services. The third study investigated information-seeking behaviors for CAM information using an existing cohort of cancer survivors. The study showed that patients in the cohort continued to use CAM well into survivorship. Patients felt very much on their own in dealing with issues outside of direct treatment, which often resulted in a search for options and CAM use. Finally, a study was conducted to investigate two methods to semi-automatically extract CAM treatment relations from the biomedical literature. The methods rely on a database (SemMedDB) of semantic relations extracted from PubMed abstracts. This study demonstrated that SemMedDB can be used to reduce manual efforts, but review of the extracted sentences is still necessary due to a low mean precision of 23.7% and 26.4%. In summary, this dissertation provided greater insight into consumer information needs for CAM. Our findings provide an opportunity to leverage existing resources to improve the information-seeking experience for consumers through high-quality online tools, potentially moving them beyond the reliance on anecdotal evidence in the decision-making process for CAM
    corecore